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Preface

The body of methods, rules, postulates, procedures, and processes that are used to 

manage a software engineering project are collectively referred to as a methodology.

There are two well-known software engineering methodologies commonly used 

in practice today. The two methodologies, informally known as the waterfall and 

spiral methodologies, are characterized by the grouping of tasks as either sequential 

or cyclical. Both of these methodologies organize some tasks very well, but have a 

narrow focus, so that crucial aspects of one methodology are missed by the other 

methodology.

This thesis defines the WaterSluice methodology. The WaterSluice borrows the 

iterative nature of the cyclical methodology along with the steady progression of the 

sequential methodology. In addition, the tasks in the WaterSluice are prioritized such 

that the most beneficial, non-conflicting tasks axe accomplished first. A collection of 

theorems is presented establishing the strengths and weaknesses of the WaterSluice as 

compared to the sequential and cyclical methodologies. The WaterSluice methodology 

represents a more accurate rendering of current software engineering practices. In this 

sense, the WaterSluice is not new but merely represents a concise description of the 

state of the art.

iv
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This thesis builds a foundation for the study of software engineering method

ologies and then categorizes the conditions under which one software engineering 

methodology will be preferred over another software engineering methodology. Pre

dicted performance characteristics for several major classes of software engineering 

methodologies under a variety of conditions axe presented.

Software engineering is a laxge and complex process of many interdependent pro

cesses of which the methodology is only one part. This thesis concentrates on the 

methodologies, but does not ignore many of the other key issues. In the appendices, 

other key issues axe covered including issues associated with requirement gathering 

including an example of a requirement document, the softwaxe engineering system life

cycle, the softwaxe engineering five-level engineering support environment, decision 

support, and documentation development.

After the introductory Chapter 1, Chapter 2 introduces the foundation phases of 

analysis, design, implementation, and testing. Chapter 3 builds from the foundation 

phases, the sequential, cyclical, and WaterSluice software engineering methodologies. 

Several established methodologies axe reviewed in Chapter 4. Chapter o, the  formal 

foundation chapter of the thesis, establishes the theoretical results which axe then 

compared to similax results from search theory in Chapter 6. This is followed by a 

survey of laxge softwaxe engineering projects in Chapter 7. The final chapter of the 

thesis. Chapter 8, introduces future work in distributed architectures, environments, 

paradigms, and component engineering. The other topics as mentioned above are 

then covered in the appendices.

v
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Figure 0.1: The WaterSluice Icon

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Acknowledgm ents

I would like to acknowledge my principal thesis advisor, Gio Wiederhold, because 

without his help this thesis would not have been possible. I would also like to thank my 

reading committee members: David Luckham, Eric Roberts, and Dorothea Beringer. 

A special thanks goes to Catherine Tornabene, Gary Payne, and Jie Wang for their 

helpful suggestions.

I would also like to thank my wife, Sandy, for the loving and understanding support 

given to me while I pursued my educational studies. I would also like to acknowledge 

my powerful daughters, Jennifer, Christy, and Katy, who almost graduated from 

college before their father.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Contents

Preface iv

A cknow ledgm ents vii

1 Introduction 1

2 Software Engineering P hases 5

2.1 In troduction .................................................................................................... 5

2.2 The Analysis P h a se .......................................................................................  6

2.2.1 T h in g s .................................................................................................. 9

2.2.2 Actions ..............................................................................................  9

2.2.3 S t a t e s .................................................................................................. 10

2.2.4 Typical Scenarios..............................................................................  10

2.2.5 Atypical Scenarios ...........................................................................  11

2.2.6 Incomplete and Non-Monotonic R equirem ents...........................  11

2.3 The Design P hase ..........................................................................................  12

2.3.1 A rchitecture........................................................................................  14

2.3.2 Implementation P l a n ........................................................................  14

2.3.3 Critical Priority Analysis.................................................................. 15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

2.3.4 Performance Analysis......................................................................... 15

2.3.5 Test P l a n ............................................................................................ 16

2.4 The Implementation P h ase ..........................................................................  IS

2.4.1 Critical Error R em oval.....................................................................  IS

2.5 The Testing P h a s e ....................................................................................... 19

2.5.1 Regression T e s t ..................................................................................  21

2.5.2 Internal T es tin g ..................................................................................  22

2.5.3 Unit T esting........................................................................................  22

2.5.4 Application T esting ...........................................................................  24

2.5.5 Stress T e s tin g .....................................................................................  25

3 M ethodologies 27

3.1 A Sequential M ethodology.......................................................................... 28

3.1.1 Introduction........................................................................................  28

3.1.2 Why It W orks.....................................................................................  28

3.1.3 Why It Does Not W ork.....................................................................  30

3.2 A Cyclical M ethodology ............................................................................. 31

3.2.1 Introduction........................................................................................  31

3.2.2 Why It W orks.....................................................................................  32

3.2.3 Why It Does Not W ork.....................................................................  32

3.3 The WaterSluice .......................................................................................... 34

3.3.1 Introduction........................................................................................  34

3.3.2 The P ro cess ........................................................................................  36

3.3.3 Why It W orks.....................................................................................  43

3.3.4 Why It Does Not W ork.....................................................................  44

3.4 Conclusion......................................................................................................  44

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4 E stablished M eth od ologies 46

4.1 The Boehm-Waterfall M ethodology........................................................... 46

4.2 The Boehm-Spiral M ethodology.................................................................  49

4.3 V ersions...........................................................................................................  51

4.4 The Booch M ethodology ..............................................................................  53

4.5 Object Modeling Technique (O M T )..........................................................  54

4.6 Rational Objectory M ethodo logy ..............................................................  55

4.6.1 P h a se s .................................................................................................... 56

4.6.2 I te r a t io n s .............................................................................................  58

4.6.3 Comparison to WaterSluice ............................................................  59

4.7 Win Win Spiral M ethodology........................................................................ 59

4.8 Conclusion........................................................................................................  61

5 Formal Foundations 62

5.1 A Preview of the Main Theorem .................................................................  62

5.2 Definitions........................................................................................................  63

5.2.1 Towards the Definition of E nvironm ent......................................... 63

5.2.2 Towards the Definition of M ethodology......................................... 79

5.2.3 Towards the Definition of P erfo rm an ce ......................................... 84

5.3 Supporting T heorem s....................................................................................  86

5.3.1 Sequential Software Engineering M ethodology............................ 86

5.3.2 Cyclical Software Engineering Methodology ...............................  94

5.3.3 WaterSluice Software Engineering M ethodo logy ........................  101

5.4 Summary Results from the Main T h e o re m .............................................  114

6 A n A nalogy w ith Search 116

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

6.1 Search B ackground.......................................................................................  116

6.2 Analogy: Search and Methodologies............................................................ 119

6.3 Conclusion....................................................................................................... 119

7 P roject Surveys 121

7.1 In troduction .................................................................................................... 121

7.2 The S u r v e y .................................................................................................... 122

7.2.1 Softwaxe Engineering Methodology P h a s e s .................................. 122

7.2.2 Software Engineering Methodology C om position........................ 122

7.2.3 System Size E s tim a te s .....................................................................  123

7.2.4 Non-monotonic Characteristics .....................................................  123

7.2.5 The Tabular F o r m ............................................................................ 123

7.3 P r o je c ts ..........................................................................................................  125

7.3.1 TDS Health Care System ...............................................................  125

7.3.2 Digital’s Virtual Memory System (V M S ).....................................  129

7.3.3 Stanford University Infrastructure .................................................. 133

7.3.4 Independent Technology Inc. ( I T I ) ............................................... 136

7.3.5 O c e a n ia ...............................................................................................  138

7.3.6 CONM OD............................................................................................  142

7.3.7 U N I X ..................................................................................................  144

7.3.8 X ............................................................................................................ 146

7.3.9 A d a .....................................................................................................  148

7.4 Software Engineering Methodologies..........................................................  151

7.4.1 A Sequential Software Engineering M ethodology........................  151

7.4.2 The Boehm-Waterfall Software Engineering Methodology . . . 152

7.4.3 A Cyclical Software Engineering M ethodology...........................  154

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

7.4.4 The Boehm-Spiral Software Engineering Methodology..............  155

7.4.5 The WaterSluice Softwaxe Engineering Methodology.................  157

7.5 S u m m a ry ......................................................................................................  158

8 C onclusion, Future, and R elated  W ork 159

5.1 Methodologies................................................................................................ 159

8.2 Paradigm s......................................................................................................  160

8.2.1 A b s tra c t...............................................................................................  160

8.2.2 The Noemic P a ra d ig m ....................................................................  160

8.3 Distributed Architectures..............................................................................  164

8.3.1 A b s tra c t...............................................................................................  164

8.3.2 Introduction......................................................................................... 165

5.4 Component E n g in e e rin g ............................................................................... 170

8.5 Distributed E n v iro n m en ts ...........................................................................  170

A Software Life C ycle 172

A.l Introduction ................................................................................................... 172

A.2 Initial Development........................................................................................ 174

A.2.1 GUI Development............................................................................... 174

A.3 Version Deployment......................................................................................  175

A.4 O perations......................................................................................................  175

A.5 M aintenance................................................................................................... 176

A.6 L egacy ............................................................................................................  176

A.7 Final D iscontinuation................................................................................... 177

B T he Supporting E ngineering E nvironm ent 178

B.l Introduction................................................................................................... 178

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

B.2 P e o p le .............................................................................................................  179

B.3 T oo ls ................................................................................................................  179

B.4 S tra te g ie s .......................................................................................................  180

B.5 M easurements................................................................................................. 181

B.6 Feedback..........................................................................................................  181

C R equirem ents G athering 182

C.l In troduction....................................................................................................  182

C.2 M odels.............................................................................................................  183

C.3 Quality Assurance ....................................................................................... 183

C.4 Storyboard .................................................................................................... 188

C.5 Some Fundamental Doctrines ...................................................................  188

C.5.1 A b s tra c tio n ....................................................................................... 189

C.o/2 Point of Views ................................................................................  192

C.5.3 S ca le .................................................................................................... 195

C.5.4 C lassification ...................................................................................  196

C.5.5 Generalization.................................................................................... 196

C.5.6 C lustering ..........................................................................................  196

C.5.7 Boundaries .......................................................................................  197

C.5.8 Coupling.............................................................................................  197

C.5.9 Cohesion.............................................................................................  197

C.5.10 Observations ...................................................................................  197

C.6 Components in a Requirement D ocum ent.................................................  198

C.7 Techniques....................................................................................................... 198

C.8 S u m m a ry ....................................................................................................... 199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

D D ecision  M aking 200

D.l Alternative T a s k s ..........................................................................................  200

D.2 O b jectives.......................................................................................................  201

D.3 O u tc o m e s .......................................................................................................  201

D.4 Utility F u n c tio n ..............................................................................................  202

D.4.1 Temporal U tilities.............................................................................  202

D.4.2 Uncertain U t i l i t ie s ..........................................................................  203

D.5 Decision R ules................................................................................................. 203

D.5.1 Weighted S u m s ................................................................................  203

D.5.2 Weighted P ro d u c ts .......................................................................... 204

D.5.3 D e v ia t io n ..........................................................................................  204

D.6 The Decision P ro c e s s ...................................................................................  204

E N etw ork O perating System  206

E.l In troduction ....................................................................................................  206

E.2 G oals.................................................................................................................  208

E.2.1 S im p le ................................................................................................. 208

E.2.2 High A v a ilab ility .............................................................................  208

E.2.3 Support C hange ................................................................................  208

E.2.4 Support L o n g e v ity .......................................................................... 209

E.2.5 Legacy S u p p o r t ................................................................................  209

E.2.6 Local Machine A u to n o m y .............................................................  209

E.3 Components: Things and A c tio n s ..............................................................  209

E.3.1 Universal Unique Identity (U U ID )................................................ 209

E.3.2 P rinc ipa l.............................................................................................  209

E.3.3 A u th e n tic a tio n ................................................................................  210

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

E.3.4 A uthorization.................................................................................... 210

E.3.5 Data P r iv a c y ....................................................................................  211

E.3.6 Process M anagem ent.......................................................................  211

E.3.7 Network B in a ry ................................................................................. 212

E.3.8 Distributed File S y s te m ................................................................. 212

E.3.9 Disk Space M anagem ent................................................................. 212

E.3.10 NOS CPU S ch e d u lin g ....................................................................  212

E.3.11 System Commands and Shell ...................   213

E.3.12 Run Time Library Support.............................................................  213

E.3.13 Memory Management.......................................................................  214

E.3.14 I/O  and Peripheral Device M a n ag em en t....................................  214

E.3.15 N etw ork ing .......................................................................................  214

E.3.16 T im e .................................................................................................... 214

E.3.17 T ran sac tio n .......................................................................................  215

E.3.18 Distributed L ocks.............................................................................  215

E.4 States ............................................................................................................  215

E.5 Typical Scenarios.........................................................................................  215

E.5.1 D ay-to -D ay .......................................................................................  215

E.5.2 Machine Setup ................................................................................  216

E.5.3 Customer S e tu p ................................................................................. 216

E.5.4 Service S e tu p .................................................................................... 216

E.5.5 NOS Setup .......................................................................................  217

E.5.6 Peripheral Device S e t u p ................................................................. 217

E.5.7 NOS development.............................................................................  217

E.6 Atypical Scenarios ......................................................................................  217

xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

E.6.1 Bring the NOS D ow n........................................................................  217

E.6.2 Remove a Machine or S e rv ic e ........................................................  218

F D ocum entation 219

G G lossary 220

H A cronym  Key 225

B ibliography 227

xvi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

List o f  Tables

2.1 The Analysis Phase: What does the system d o ? ..................................... 6

2.2 The Design Phase: What are the plans? .................................................. 12

2.3 The Implementation Phase: Now build it! ..............................................  18

2.4 The Testing Phase: Improve Quality............................................................  19

2.5 Categories of Q u a lity .....................................................................................  22

4.1 Boehm-Spiral Methodology S tages............................................................... 49

5.1 Summary of C om pleteness............................................................................ 114

5.2 Summary of Performance...............................................................................  114

7.1 Survey Part 1: Basic P ro p e rtie s .................................................................  124

7.2 Survey Part 2: Change C o n t r o l .................................................................  124

7.3 Survey Part 1: Basic Properties T D S ........................................................ 128

7.4 Survey Part 2: Change Control T D S ........................................................ 129

7.5 Survey Part 1: Basic Properties V M S ........................................................ 132

7.6 Survey Part 2: Change Control V M S ........................................................ 133

7.7 Survey Part 1: Basic Properties S tan fo rd ..................................................  135

7.8 Survey Part 2: Change Control S ta n fo rd .................................................  135

7.9 Survey Part 1: Basic Properties I T I ............................................................ 137

xvii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

7.10 Survey Part 2: Change Control I T I ..........................................................  138

7.11 Survey Part 1: Basic Properties O c e a n ia ................................................  141

7.12 Survey Part 2: Change Control Oceania ................................................. 141

7.13 Survey Part 1: Basic Properties CO N M O D .............................................  143

7.14 Survey Part 2: Change Control C O N M O D .............................................  144

7.15 Survey Paxt 1: Basic Properties U N I X .................................................... 145

7.16 Survey Part 2: Change Control UN IX.......................................................  146

7.17 Survey Paxt 1: Basic Properties X .............................................................. 147

7.18 Survey Paxt 2: Change Control X ............................................................. 148

7.19 Survey Paxt 1: Basic Properties A d a ......................................................  150

7.20 Survey Part 2: Change Control A d a .........................................................  150

7.21 Survey: A Sequential Softwaxe Engineering Methodology: Paxt 1 . . . 151

7.22 Survey: A Sequential Softwaxe Engineering Methodology: Paxt 2 . . . 152

7.23 Survey: Boehm-Waterfall : Part 1 ............................................................... 153

7.24 Survey: Boehm-Waterfall: Part 2 ............................................................... 153

7.25 Survey: Cyclical : Part 1 ...............................................................................  154

7.26 Survey: Cyclical : Paxt 2 ...............................................................................  155

7.27 Survey: Boehm-Spiral: Part 1 .....................................................................  156

7.28 Survey: Boehm-Spiral: Part 2 .....................................................................  156

7.29 Survey: WaterSluice: Part 1 ........................................................................  157

7.30 Survey: WaterSluice: Part 2 ........................................................................  158

8.1 Example of a Traditional C Program with Header File.........................  166

B.l Supporting Engineering E nvironm ent......................................................  179

F .l The Customer M a n u a l ....................................................................................219

xviii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

List o f Figures

0.1 The WaterSluice Ic o n ..................................................................................... vi

3.1 A Sequential M ethodology...........................................................................  29

3.2 A Cyclical M ethodology............................................................................... 33

3.3 A Gold Sluice D iag ram .................................................................................. 35

3.4 The WaterSluice M ethodology.....................................................................  37

4.1 The Boehm-Waterfall M ethodology...........................................................  48

4.2 The Boehm-Spiral Methodology ..............................................................  50

4.3 The Version Process ..................................................................................... 52

4.4 The Rational Objectory Methodology.......................................................... 56

5.1 A Compound S t e p ........................................................................................  67

5.2 A Complex S tep ............................................................................................... 69

5.3 Two Sibling Steps and their Overlapping D ecom position ....................  71

5.4 Multi-layered S pace ........................................................................................  72

5.5 The Environm ent...........................................................................................  77

5.6 The T ax o n o m y ............................................................................................... 78

5.7 A S o lu tion ........................................................................................................  80

5.8 A Partial Solution............................................................................................ 82

xix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

•5.9 Sequential: Beginning...............................................................................  88

5.10 Sequential: In term ediate .........................................................................  89

5.11 Sequential: F i n a l ...................................................................................... 90

5.12 Cyclical: Final .............................................................................................  96

5.13 Priority Based S p a c e ...................................................................................  103

5.14 WaterSluice: Proof of P r in c ip le ...............................................................  104

5.15 WaterSluice: P ro to type...............................................................................  105

5.16 WaterSluice: A lp h a .....................................................................................  106

5.17 WaterSluice: B e ta ......................................................................................... 107

5.18 WaterSluice: P ro d u c t..................................................................................  108

A.l The Software Engineering Life C y c l e .........................................................  173

C.l Three Basic M odels......................................................................................  184

C.2 Declarative and Imperative K now ledge...............................................  185

C.3 Quality Assurance as V alidation................................................................  186

C.4 A bstractions...................................................................................................  191

C.5 Point of Views................................................................................................  193

xx

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

C hapter 1

Introduction

A so ftw are  e n g in e e rin g  project involves people guided by common goals and stra te

gies working with a collection of tools to produce documents and code. The tools 

include compilers, debuggers, environments, change management, source control, 

project management, document processors, and domain modeling tools. The doc

uments produced include requirements that define the problem, customer manuals, 

test plans, scenarios, a design that defines the architecture, and implementation plans. 

The code may deal with objects, data structures, algorithms, methods, modules, pro

tocols, and interface definitions. The strategies are materialized through the collection 

of the architecture, methods, paradigms, risk analyses, conventions, and a mission 

statem ent. These steps together define the cradle-to-grave life cycle of the software 

project.

Just how should a software engineering project be managed? The answer is not 

unique nor is it clearly defined. It is a combination of many ingredients. One of the  

key ingredients in the management of an engineering project is the m e th o d o lo g y .

1
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CHAPTER 1. INTRODUCTION

Two well-known categories of software engineering methodologies are the sequen

tia l and the cyclical, informally known as the waterfall and spiral methodologies. A 

third methodology is introduced here, called the W aterS lu ice  methodology, which 

combines the best aspects of the previous two methodologies. It takes the iterative 

nature of the cyclical methodologies and the steady progression of the sequential 

methodologies and then adds priority and conflicting requirement management.

All three methodologies deal with four simple p h ases  of software engineering, 

namely analysis, design , im p lem en ta tio n , and te s tin g . These concepts are first 

introduced before the detailed discussion of methodologies.

The following is the main theorem of the thesis.

T h eo rem  1 Different software engineering methodologies have significant performance 

variations depending on the given environment. A software engineering methodology 

that is goal focused, manages conflicts, and differentiates between different priorities 

is best suited for dynamic non-monotonic environments.

Though the statement of the theorem appears simple, the complexity is in the 

details of the formal definitions of software engineering methodologies, performance, 

and environment. The variations in performance of different software engineering 

methodologies are sufficiently great as to make the choice of which software engineer

ing methodology to use dependent on the surrounding environment.

First the en v iro n m en t will be defined. As discussed later, the environment defi

nition is built from the definitions of the analysis, design, implementation, and testing 

phases. Each phase defines a plane which is then defined in terms of a tom ic, com 

pound , and com plex  s tep s . One step may have a s ib lin g  re la tio n sh ip  with other 

steps. Together the four planes form a m u lti- lay e red  space, either s ta tic  or dy 

nam ic. In some cases, a dynamic space may exhibit the  non -m o n o to n ic  property.
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CHAPTER 1. INTRODUCTION 3

There are two special steps: the p ro b lem  s ta te m e n t and the system  accep tance  

te s t. The environment is the multi-layered space consisting of the analysis, design, 

implementation, and testing planes with two special steps: the initial problem state

ment and the system acceptance test.

Next we define the methodology, as discussed later, as an algorithm that finds a 

so lu tio n  in the given environment of the multi-layered space consisting of the anal

ysis. design, implementation, and testing plane starting with the root represented by 

the problem statement and ending with the goal represented by the system accep

tance test. Three classes of methodologies axe presented: sequential, cyclical, and the 

VVaterSluice.

Finally, we define performance, as discussed later, as the number of steps needed 

by a methodology to find a solution. A family of theorems and corollaries are then 

proven. In summary, the proceeding theorems and corollaries generate several key 

results:

• All three categories of software engineering methodologies are complete for static 

environments. See Theorems 2, 3, and 4.

• Only cyclical and WaterSluice are complete for dynamic environments. See 

Corollaries 2.4, 3.4, and 4.1.

• Only WaterSluice is complete for non-monotonic environments. See Corollaries 

2.5, 3.5, and 4.2.

• The best case performance of sequential software engineering methodology is 

O(N). See Corollaries 2.1.

• The best case performance of cyclical and WaterSluice software engineering 

methodologies is 0(1). See Corollaries 3.1, and 4.3.
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•  The worst case performance of all three categories of methodologies are the 

same. See Corollaries '2.2, 3.2, and 4.4.

• On average, the sequential methodology will find a solution in 0(N). See Corol

lary 2.3. On average, the cyclical methodology will find a solution in 0(N ). 1 

See Corollary 3.3. On average, the WaterSluice will find a solution an order-of- 

magnitude less than N. See Corollary 4.5.

• A software engineering methodology that is goal focused, manages conflicts, 

and differentiates between different priorities is best suited for dynamic non

monotonic environments.

As an analogy, the search section compares the three methodologies to algorithms 

in a search space. It will be shown that the sequential methodologies is analogous 

to a b re a d th -f irs t search, the cyclical methodologies is analogous to a d ep th -f irs t 

search, and the WaterSluice methodology is analogous to a b e s t- firs t  search .

Some established methodologies are reviewed in Chapter 4 including Boehm- 

Waterfall Methodology, Boehm-Spiral Methodology, Booch Methodology, Object Mod

eling Technique (OM T), Rational Objectory Methodology, and Win Win Spiral Method

ology-

Chapter 7 reviews several large projects while future work is outlined in Chapter

8 .

1A more accurate average performance measurement for a  cyclical software engineering method
ology is N/2.
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Chapter 2 

Software Engineering Phases

2.1 Introduction

Before we descend into the definition of software engineering methodologies, we need 

to define the meanings of some of the fundamental phases.

There are four fundamental phases in most, if not ail, software engineering 

methodologies. These phases are analysis, design, implementation, and testing. These 

phases address what is to be built, how it will be built, building it, and making it 

high quality. These phases will now be defined as they apply to the life cycle stage 

of product delivery emphasized in this thesis.

Even though this thesis emphasizes the four phases of analysis, design, implemen

tation, and testing in a software engineering methodology as it applies to the software 

life cycle s tag e  of p ro d u c t delivery , the results are also applicable to the other 

software life cycle stages of dep loym en t, o p e ra tio n s , m ain tenance , legacy , and 

finally d isco n tin u a tio n  as the system transitions through many versions from cra

dle to death. This is explored in more details in Appendix A. In many systems the

5
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majority of the total system cost is in the later life cycle stages and only a minority 

of the total system cost in the initial development.

2.2 The A nalysis P hase

Phase Deliverable
Analysis •  Requirements Document

•  Domain Ontology
- Things
- Actions
- States

• Typical Scenarios
•  Atypical Scenarios

Table 2.1: The Analysis Phase: What does the system do?

The analysis phase  defines the req u irem en ts  of the system, independent of 

how these requirements will be accomplished. This phase defines the problem that 

the customer is trying to solve. The deliverable result at the end of this phase is a 

requirement document. Ideally, this document states in a clear and precise fashion 

what is to be built. This analysis represents the “what” phase. The requirement 

document tries to capture the requirements from the customer’s perspective by defin

ing goals and interactions at a level removed from the implementation details. The 

analysis phase is summarized in Table 2.1 on page 6.

The req u irem en t document may be expressed in a formal language based on 

mathematical logic. Traditionally, the requirement document is written in English or 

another written language.

The requirement document does not specify the architectural or implementation 

details, but specifies information at the higher level of description. The problem
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statement, the customer’s expectations, and the criteria for success are examples 

of high-level descriptions. There is a fuzzy line between high-level descriptions and 

low-level details.

Sometimes, if an exact engineering detail needs to be specified, this detail will also 

appear in the requirement document. This is the exception and should not be the rule. 

These exceptions occur for many reasons including maintaining the consistency with 

other established systems, availability of particular options, customer’s demands, and 

to establish, at the requirement level, a particular architecture vision. An example 

of a low-level detail that might appear in the requirement document is the usage of 

a particular vendor’s product line, or the usage of some accepted computer industry 

standard, or a constraint on the image size of the application.

There is a fundamental conflict between high levels and low levels of detail. The 

requirement document states what the system should accomplish, independent of 

many of the details. The discovery process used in establishing the requirements 

during the analysis phase is best described as a refinement process than as a levels- 

of-detail process [106].

Top-down and bottom-up approaches force a greater distinction between high 

levels and low levels of detail. Interactive approaches lead to the refinement of those 

details.

Traditionally, the requirement document describes the th in g s  in the system and 

the actions that can be done on these things. Things might be expressed as objects in 

an object-based technology where data and algorithms are hidden behind hierarchical- 

polymorphic methods. 1 Alternatively, things might be expressed as services accessing

1 In object-based systems a scheme forms an hierarchy used to establish inheritance of methods 
and data structures. A child object class in the hierarchy inherits their patent’s methods and data  
structures. Multiple polymorphic methods share the sam e name and similar, conceptual algorithms.
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databases in a functional approach where data is a  fundamentally different concept 

than functions. In general, the description of things in the system can be much more 

general and not confined to a particular technology. In a more general sense, this 

document describes the o n to logy , that is the noun phrases and the verb phrases, 

that will become the guidelines for defining the application specific protocol.

The requirement descriptions of the things in the system and their actions does 

not imply an axchitecture design rather a description of the artifacts of the system 

and how they behave, from the customer’s perspective. Later, in the design phase, 

these requirement descriptions are mapped into computer science based primitives, 

such as lists, stacks, trees, graphs, algorithms, and data  structures.

The description of the abstraction of the noun phrases and the verb phrases are 

not bound to the use of a written human language. Most written human languages 

are too vague to capture the precision necessary to build a system. Alternative 

descriptive mechanisms based on mathematical logic are sometimes more suitable but 

much more difficult to accomplish. Mathematical logic provides a scientific foundation 

for precisely expressing information. However, frequently in the real world, a  precise 

description is not attainable.

Again the requirement document should state in a clear and precise fashion what 

is to be built. The definitive mechanism to author such a document, either formally 

or informally, has yet to be developed, although reasonable success has been achieved 

with existing methods including CASE tools and tools based on m athematical logic. 

See [41], [27], and [110].

Later, in the design phase, the very important decomposition of the problem leads

The method “plus” used for integer, real, and complex would be an example of a polymorphic 
method.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 2. SOFTW ARE ENGINEERING PHASES 9

to the development of data structures and algorithms. A functional decomposition 

for a distributed environment leads to a natural split of the data structures and 

algorithms. Examples include distributed client-server systems, where a database 

holds the data in a server while the algorithms manipulating the data reside on the 

client. An object-based decomposition leads to a natural joining of data structures 

and algorithms forming objects with methods. The requirement documents should 

be independent of the decomposition technique.

The analysis team develops the requirement document, which talks about things 

and actions on things. This document should also include states, events, typical 

scenarios of usage, and atypical scenarios of usage. The definitions of things, actions, 

states, typical scenarios, and atypical scenarios follow this section. More detailed 

examples of a requirement document can be found later in this thesis. See Appendix 

E on page 206 for an example requirement document.

2 .2 .1  T hings

The requirement document first of all defines the ontology of the system which is, 

in the more general sense, the noun phrases. Here the pieces and parts, constants, 

names, and their relationships to each other are specified.

2 .2 .2  A ctions

The requirement document defines the actions that the system should perform. This 

is expressed, in the more general sense, as verb phrases. Methods, functions, and 

procedures axe all examples of actions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 2. SOFTW ARE ENGINEERING PHASES 10

2.2 .3  S ta tes

S ta te s  are defined as a sequence of settings and values which distinguishes one time- 

space slice of a system from another slice. Every state-full system goes through a 

series of state changes. Example states include the initial state, the final state, and 

potentially many error states. Most of the states are domain specific.

States axe associated with things in the system. An event triggers a potential 

state transition which may then lead to an action taken by the system.

2.2 .4  T yp ica l Scenarios

A scenario is a sequence of steps taken to accomplish a given goal. When the 

system is completed and the application is available, the customer should be able, in 

an easy and clearly specified manner, to accomplish all typical usage scenarios for the 

application.

The ty p ica l scenarios should represent the vast majority of uses for the system. 

The exact coverage of the system by the typical scenarios vary, but a 90 percent 

coverage is desirable. Obviously, a system with only one possible usage scenario will 

be easy to cover while a system with thousands of possible usage scenarios will be 

much harder to cover.

Frequently the 80/20 rule is invoked. Eighty percent of the functionality of a 

typical system is accomplished by twenty percent of the work. To accomplish the 

remaining minority functionality requires the vast majority of the work.
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2 .2 .5  A typ ica l Scenarios

An atyp ica l scen a rio  is something that needs to be accomplished within the system, 

but only seldom. The actions have to be done correctly, but perhaps at lower effi

ciency. The customer should hope that an unexpected error condition is an atypical 

event. Nonetheless, the system should be able to deal with many categories of faults 

by using several established techniques, such as exception handlers, replications, pro

cess monitoring, and roll over. Atypical scenarios and typical scenarios share similar 

coverage.

2.2 .6  Incom plete and N on -M on oton ic R eq u irem en ts

An entire enumeration of all of the requirements is not possible for nearly all real-life 

situations. Godel’s incompleteness theorem of arithmetic says that there is no finite 

list of axioms that completely describe integer arithmetic. Expressed in our terminol

ogy, there is no finite list of requirements that would completely describe arithmetic. 

Since integer arithmetic is an underlying foundation of most computer hardware sys

tems and software applications, and since we can’t even enumerate the requirements 

for integer arithmetic, the task of completely enumerating a more complex system is 

certainly intractable.

In traditional logic, a theory is defined by a finite set of axioms. Theorems within 

the theory are valid sentences. If new axioms are added to  the theory, the already 

existing theorems remain valid and the theory is extended into a new theory with 

new theorems added to the established theorems.

In non-m ono ton ic  logic, adding new axioms to the theory may invalidate ex

isting theorems that were already proven. A new theory is created which is not a 

simple extension of the old theory, but a collection of new theorems and some of the
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established theorems.

The requirement gathering process is iterative in nature and more like non-monotonic 

logic than monotonic logic. An initial collection of requirements, the axioms of the 

system, define the capabilities, the theorems of the system. New requirements may 

lead to a collection of capabilities different than the established capabilities. New 

requirements may negate old solutions.

Early in the process, some requirements are established. As the process contin

ues, other requirements axe discovered which may be in conflict with earlier known 

requirements, thus leading a different system. See [95].

Unfortunately, as a system increases in size and complexity, the requirement gath

ering process becomes more and more intractable. This is especially true when the 

requirement gathering process is distributed across many individuals from many dif

ferent disciplines.

2.3 T he D esig n  P hase

Phase Deliverable
Design • Architecture Document

• Implementation Plan
• Critical Priority Analysis
•  Performance Analysis
•  Test Plan

Table 2.2: The Design Phase: What are the plans?

In the design  p h ase  the a rc h ite c tu re  is established. This phase starts with the 

requirement document delivered by the requirement phase and maps the requirements 

into an architecture. The a rc h ite c tu re  defines the components, their interfaces and
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behaviors. The deliverable design document is the architecture. The design document 

describes a plan to implement the requirements. This phase represents the “how" 

phase. Details on computer programming languages and environments, machines, 

packages, application architecture, distributed architecture layering, memory size, 

platform, algorithms, data structures, global type definitions, interfaces, and many 

other engineering details are established. The design may include the usage of existing 

components. The design phase is summarized in Table 2.2 on page 12.

The architectural team can now expand upon the information established in the 

requirement document. Using the typical and atypical scenarios provided from the 

requirement document, performance trade-offs can be accomplished as well as com

plexity of implementation trade-offs.

Obviously, if an action is done many times, it needs to be done correctly and 

efficiently. A seldom used action needs to be implemented correctly, but it is not 

obvious what level of performance is required. The requirement document must guide 

this decision process. An example of a seldom used action which must be done with 

high performance is the emergency shutdown of a nuclear reactor.

Analyzing the trade-offs of necessary complexity allows for many things to re

main simple which, in turn, will eventually lead to a higher quality product. The 

architecture team also converts the typical scenarios into a test plan.

In our approach, the team, given a complete requirement document, must also 

indicate c r it ic a l  p rio ritie s  for the implementation team. A critical implementation 

priority leads to a task that has to be done right. If it fails, the product fails. If it 

succeeds, the product might succeed. At the very least, the confidence level of the 

team producing a successful product will increase. This will keep the implementation 

team focused. Exactly how this information is conveyed is a skill based on experience
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more than a science based on fundamental foundations.

The importance of priority setting will become evident in the theory chapter 

presented later.

2.3.1 A rchitecture

The architecture defines the components, interfaces, and behaviors of the system.

The components are the building blocks for the system. These components may 

be built from scratch or re-used from an existing component library. The components 

refine and capture the meaning of details from the requirement document.

The components are composed with other components using their interfaces. An 

interface forms a common boundary of two components. The interface is the architec

tural surface where independent components meet and communicate with each other. 

Over the interface, components interact and affect each other.

The interface defines a behavior where one component responds to the stimuli of 

another component’s actions.

2.3.2 Im plem entation  Plan

The im p lem en ta tio n  p lan  establishes the schedule and needed resources. It defines 

implementation details including programming languages, platforms, programming 

environments, debuggers, and many more.

The implementation plan could be considered as part of the design, which is the 

position taken here, or it could be considered as the first accomplishment in the 

implementation phase. One of the goals of the design phase is to establish a plan 

to complete the system. Thus it is very natural to include the  implementation plan. 

Also, the trade-offs between alternative architectures can be influenced by differences
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in their implementation plans.

2.3 .3  C ritical P riority  A nalysis

The c ritic a l p rio rity  ana ly sis  generates a list of c ritic a l tasks. It is absolutely 

necessary to successfully accomplish a critical task. The project will succeed or fail 

based on the outcome of these tasks. Some projects may have more than  one critical 

task.

There are two major categories of critical tasks. One category of tasks are associ

ated with the building of the system. These are the critical tasks that the teams must 

accomplish well. An example might be a high-quality implementation of a critical 

section of code in the system.

The other category of critical tasks are associated with the system itself. These 

are the critical tasks tha t the system, once built, must accomplish well. An example 

might be the successful flying of an airplane under automatic pilot.

It is absolutely necessary to successfully accomplish both categories of critical 

tasks.

Not all methodologies have critical priority analysis as a well defined task. Later 

in the thesis it will be shown that the setting of priorities will play a significant role 

in methodology’s performance characteristics. Critical priority analysis is one of the 

key features of the WaterSluice software engineering methodology.

2.3 .4  P erform ance A nalysis

Once given the typical scenarios from the requirement document, the system can be 

designed to meet performance objectives. Different system architectures will yield 

different predicted performance characteristics for each typical scenario. Depending
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on the usage frequency of the scenarios in the system, each architecture will have 

benefits and drawbacks with advantages and disadvantages. The trade-offs are then 

weighted to establish the system architecture. Frequently a system is designed to give 

fast response to an action initiated by a human customer at the expense of having 

to do more complex systems work such as including indexes, cache management, and 

predictive pre-calculations.

2.3 .5  T est P lan

The te s t  p lan  defines the testing necessary to establish quality for the system. If 

the system passes all tests in the test plan, then it is declared to be complete. If 

the system does pass all test then it is considered to be of high quality. The more 

complete the coverage of the system, the higher is the confidence in the system: hence 

the system s quality rises.

The test plan could be considered as part of the design, which is the position taken 

here, or it could be considered as the first accomplishment in the testing phase. One 

of the goals of the design phase, is to establish a plan to complete the system, thus 

it is very natural to include the test plan. Also the trade-offs between alternative 

architectures can be influenced by differences in their test plans.

One single test will exercise only a portion of the system. The coverage of the test 

is the percentage of the system exercised by the test. The coverage of a suite of tests 

is the union of the coverage of each individual test in the suite.

Ideally, 100 percent test coverage of the entire system would be nice, but this is 

seldom achieved. Creating a test suite that covers 90 percent of the entire system is 

usually simple. Getting the last 10 percent requires significant amount of development 

time.
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For an example, consider the Basic Input/O utput System (BIOS) built by IBM 

in the early 1980s as the foundation of the Disk Operating System (DOS) built by 

Microsoft. For performance reasons, the BIOS needed to be placed in a Read Only 

Memory (ROM) chip. Because the BIOS would be placed on a ROM, error patches 

would be nearly impossible. Thus 100% test coverage of the BIOS was dictated. The 

BIOS code itself was small, only a few thousand lines. Because the BIOS is asyn

chronous in nature, creating a test would first require an asynchronous environment 

to bring the system to a desired state, and then an event would be needed to trigger a 

single test. Quickly, the test suite grew much larger than the BIOS. This introduced 

the problem of doing quality assurance on the test suite itself. Eventually. 100% 

coverage was reached but at a high cost. A more cost effective approach would be to 

place the BIOS on a Electronic Programmable ROM (EPROM) and ROM combina

tion. Most of the BIOS would be on the ROM with error patches being placed on 

the EPROM. This is the approach that Apple took on the Macintosh.

Usually, it is sufficient that the test suite includes all of the typical and atypical 

scenarios and need not cover the entire system. This gives reasonable quality for the 

investment of resources. All the typical and atypical scenarios need to be covered, 

but in doing so, not all threads of execution within the system may be covered. The 

system may contain internal branches, errors, or interrupts that will lead to untested 

threads of execution. Tools exists to measure code coverage.

Systems are full of undiscovered bugs. The customer becomes a logical member 

of the testing team and bug fixes are pushed off to the next release.
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2.4 The Im plem entation  P h ase

is

Phase Deliverable
Implementation • Code

• Critical Error Removal

Table 2.3: The Implementation Phase: Now build it!

In the im p lem en ta tion  phase, the team builds the components either from 

scratch or by composition. Given the architecture document from the design phase 

and the requirement document from the analysis phase, the team should build exactly 

what has been requested, though there is still room for innovation and flexibility. For 

example, a component may be narrowly designed for this particular system, or the 

component may be made more general to satisfy a reusability guideline. 2 The 

architecture document should give guidance. Sometimes, this guidance is found in 

the requirement document. The implementation phase is summarized in Table 2.3 on 

page 18.

The implementation phase deals with issues of quality, performance, baselines, 

libraries, and debugging. The end deliverable is the product itself.

There are already many established techniques associated with implementation. 

This thesis does not depend on which technique is followed.

2 .4 .1  Critical Error R em oval

There axe three kinds of errors in a system, namely critical errors, non-critical errors, 

and unknown errors.

2 A reusability guideline defines a general purpose component that may have many uses across 
many systems.
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A critica l e r ro r  prevents the system from fully satisfying the usage scenarios. 

These errors have to be corrected before the system cam be given to a customer or 

even before future development can progress.

A non-critical e r ro r  is known but the presence of the error does not significantly 

affect the system’s perceived quality. There may indeed be many known errors in the 

system. Usually these errors are listed in the release notes and have well established 

work arounds.

In fact, the system is likely to have many, yet-to-be-discovered errors. The effects 

of these errors are unknown. Some may turn out to be critical while some may be 

simply fixed by patches or fixed in the next release of the system.

2.5 The T esting P hase

Phase Deliverable
Testing • Regression Test

• Internal Testing
• Unit Testing
• Application Testing
• Stress Testing

Table 2.4: The Testing Phase: Improve Quality.

Simply stated, quality is very important. Many companies have not learned that 

quality is important and deliver more claimed functionality but at a lower quality 

level. It is much easier to explain to a customer why there is a missing feature than 

to explain to a customer why the product lacks quality. A customer satisfied with 

the quality of a product will remain loyal and wait for new functionality in the next 

version. Quality is a distinguishing attribute of a system indicating the degree of
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excellence.

The testing phase is summarized in Table 2.4 on page 19. For more information 

on testing see [10], [11], [66], [67], [78], [79], [72], [96], [102], [113], [8], [61], [62], [43]. 

[35], and [113].

In many software engineering methodologies, the te s t in g  phase  is a separate 

phase which is performed by a different team after the implementation is completed. 

There is merit in this approach; it is hard to see one’s own mistakes, and a fresh eye 

can discover obvious errors much faster than the person who has read and re-read 

the material many times. Unfortunately, delegating testing to another team leads to 

a slack attitude regarding quality by the implementation team.

Alternatively, another approach is to delegate testing to the the whole organiza

tion. If the teams are to be known as craftsmen, then the teams should be responsible 

for establishing high quality across ail phases. Sometimes, an attitude change must 

take place to guarantee quality. 3

Regardless if testing is done after-the-fact or continuously, testing is usually based 

on a regression technique split into several major focuses, namely in te rn a l, u n it, 

ap p lica tio n , and stress.

The testing technique is from the perspective of the system provider. Because it 

is nearly impossible to duplicate every possible customer’s environment and because 

systems are released with yet-to-be-discovered errors, the customer plays an impor

tant, though reluctant, role in testing. As will be established later in the thesis, in 

the WaterSluice methodology this is accomplished in the alpha and beta release of 

the system.

3For some reason, many engineering organizations think that quality assurance is below their 
dignity. The better attitude would be th a t every member of an engineering organization should 
make quality an im portant aspect.
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2.5.1 R egression  T est

Quality is usually appraised by a collection of regression  te s ts  forming a suite of 

programs that test one or more features of the system.

A regression test is written and the results are generated. If the results are in 

error, then the offending bug is corrected. A valid regression test generates verified 

results. These verified results are called the “gold s ta n d a rd .” This term is borrowed 

from financial markets where paper money issued by governments was backed by real 

gold. 4

Ideally, the validity of a test result is driven by the requirement document: in 

practice, the implementation team is responsible for validity interpretation.

The tests are collected, as well as their gold-standard results, into a regression test 

suite. As development continues, more tests are added, while old tests may remain 

valid. Because of new development, an old test may no longer be valid. If this is 

the case, the old test results are altered in the “gold standard” to match the current 

expectations. The test suite is run generating new results. These new results are then 

compared with the gold-standard results. If they differ, then a potential new fault 

has entered the system. The fault is corrected and the development continues. This 

mechanism detects when new development invalidates existing development, and thus 

prevents the system from regressing into a fault state.

There are four major focuses of regression testing used to assure quality. A sum

mary is found in Table 2.5 on page 22. The discussion follows.

4The software engineering methodology WaterSluice will be used to discover the “gold” in a 
system.
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Focus Note Team
Responsibility

Internal Make sure all internal, 
non-customer-visible com
ponents work well.

Implementation
Team

Unit Make sure all customer- 
visible components work 
well.

Implementation and 
Design Teams

Application Make sure the application 
can complete all scenarios.

Analysis Team

Stress Run the application in an 
environment that is more 
stressful than the target 
environment.

All Teams

Table 2.5: Categories of Quality

2 .5 .2  Internal T esting

In te rn a l te s tin g  deals with low-level implementation. Here each function or compo

nent is tested. This testing is accomplished by the implementation teams. This focus 

is also called cleax-box testing, or sometimes white-box testing, because all details are 

visible to the test. Internal limits are tested here.

2.5 .3  U nit T estin g

U n it te s tin g  deals with testing a unit as a whole. This would test the interaction 

of many functions but confine the test within one unit. The exact scope of a unit 

is left to interpretation. Supporting test code, sometimes called scaffolding, may 

be necessary to support an individual test. This type of testing is driven by the 

architecture and implementation teams. This focus is also called black-box testing 

because only the details of the interface are visible to the test. Limits that are global
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to a unit axe tested here.

In the construction industry, scaffolding is a temporary, easy to assemble and dis

assemble. frame placed around a building to facilitate the construction of the building. 

The construction workers first build the scaffolding and then the building. Later the 

scaffolding is removed, exposing the completed building. Similarly, in software test

ing, one particular test may need some supporting software. This software establishes 

an environment around the test. Only when this environment is established can a 

correct evaluation of the test take place. The scaffolding software may establish state 

and values for data structures as well as providing dummy external functions for the 

test. Different scaffolding software may be needed from one test to another test. 

Scaffolding software rarely is considered part of the system.

Sometimes the scaffolding software becomes larger than the system software being 

tested. Usually the scaffolding software is not of the same quality as the system 

software and frequently is quite fragile. A small change in the test may lead to much 

larger changes in the scaffolding.

Internal and unit testing can be automated with the help of coverage tools. A 

coverage tool analyzes the source code and generates a test that will execute every 

alternative thread of execution. It is still up to the programmer to combine these test 

into meaningful cases to validate the result of each thread of execution. Typically, 

the coverage tool is used in a slightly different way. First the coverage tool is used 

to augment the source by placing informational prints after each line of code. Then 

the testing suite is executed generating an audit trail. This audit trail is analyzed 

and reports the percent of the to tal system code executed during the test suite. If 

the coverage is high and the untested source lines axe of low impact to the system’s 

overall quality, then no more additional tests are required.
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2 .5 .4  A pplication  T esting

A pplica tion  te s tin g  deals with tests for the entire application. This is driven by 

the scenarios from the analysis team. Application limits and features are tested here.

The application must successfully execute ail scenarios before it is ready for general 

customer availability. After all, the scenarios are a part of the requirement document 

and measure success. Application testing represents the bulk of the testing done by 

industry.

Unlike the internal and unit testing, which are programmed, these test are usually 

driven by scripts that run the system with a collection of parameters and collect 

results. In the past, these scripts may have been written by hand but in many 

modern systems this process can be automated.

Most current applications have graphical user interfaces (GUI). Testing a  GUI to 

assure quality becomes a bit of a problem. Most, if not all, GUI systems have event 

loops. The GUI event loop contains signals for mouse, keyboard, window, and other 

related events. Associated with each event are the coordinates on the screen of the 

event. The screen coordinates can be related back to the GUI object and then the 

event can be serviced. Unfortunately, if some GUI object is positioned at a different 

location on the screen, then the coordinates change in the event loop. Logically the 

events at the new coordinates should be associated with the same GUI object. This 

logical association can be accomplished by giving unique names to all of the GUI 

objects and providing the unique names as additional information in the events in 

the event loop. The GUI application reads the next event off of the event loop, locates 

the GUI object, and services the event.

The events on the event loop are usually generated by human actions such as typ

ing characters, clicking mouse buttons, and moving the cursor. A simple modification
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to the event loop can journal the events into a file. At a later time, this file could be 

used to regenerate the events, as if the human was present, and place them on the 

event loop. The GUI application will respond accordingly.

A tester, using the GUI, now executes a scenario. A journal of the GUI event loop 

from the scenario is captured. At a later time the scenario can be repeated again and 

again in an automated fashion. The ability to repeat a test is key to automation and 

stress testing.

2.5 .5  Stress T esting

S tress tes tin g  deals with the quality of the application in the environment. The idea 

is to create an environment more demanding of the application than the application 

would experience under normal work loads. This is the hardest and most complex 

category of testing to accomplish and it requires a joint effort from all teams.

A test environment is established with many testing stations. At each station, 

a script is exercising the system. These scripts are usually based on the regression 

suite. More and more stations are added, all simultaneous hammering on the system, 

until the system breaks. The system is repaired and the stress test is repeated until 

a level of stress is reached that is higher than expected to be present at a customer 

site.

Race conditions and memory leaks axe often found under stress testing. A race 

condition is a conflict between at least two tests. Each test works correctly when 

done in isolation. When the two tests axe run in parallel, one or both of the tests fail. 

This is usually due to an incorrectly managed lock.

A memory leak happens when a test leaves allocated memory behind and does 

not correctly return the memory to the memory allocation scheme. The test seems
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to run correctly, but after being exercised several times, available memory is reduced 

until the system fails.
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Chapter 3 

M ethodologies

In this chapter, three major categories of methodologies are presented: sequential, 

cyclical, and WaterSluice. The sequential and cyclical methodologies, informally 

known as the waterfall and spiral methodologies, are generic in design and have 

been simplified to emphasize a key aspect. In a sequential methodology, the four 

phase of analysis, design, implementation, and testing follow each other sequentially. 

In a cyclical methodology, the four phase of analysis, design, implementation, and 

testing are cycled with each cycle generating an incremental contribution to the final 

system. The WaterSluice is a hybrid borrowing the steady progress of the sequential 

methodology along with the iterative increments of the cyclical methodology and adds 

priority and governors to control change.

These three categories of methodologies form a basis for comparison. In the theory 

chapter, the categories are analyzed in detail. In the survey of methodology chapter, 

other more established methodologies, are categorized. Performance characteristics 

of established methodologies can be analyzed based on this categorization.

The computer software industry has introduced a m ajor confusion in terms of

27
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naming of methodologies. The B o eh m -w aterfa ll methodology, analyzed later in 

this thesis, is most often quoted as a sequential methodology, but the original paper 

presents it as a cyclical methodology. However, in the greater computer software 

industry, the term waterfall has come to mean any sequential methodology. This 

leads to major confusion and hence the introduction, in this thesis, of the sequential 

classification. Likewise, the B o eh m -sp ira l methodology, also analyzed later in this 

thesis, is most quoted as a cyclical methodology but behaves more like a sequential 

methodology with many stages. Yet the term spiral has come to mean any cyclical 

methodology.

3.1 A Sequential M eth od ology

3.1 .1  Introduction

In a sequen tia l m eth o d o lo g y , informally known as the waterfall, the analysis phase 

comes first, then the design phase, followed by the implementation phase, and finally 

by the testing phase. The team  that does each phase may be different, and there may 

be a management decision point at each phase transition. See Figure 3.1 on page 29.

3 .1 .2  W hy It Works

A sequential methodology is successful when the complexity of the system is low and 

requirements are static. A sequential methodology simply states that first one should 

think about what is being built, then establish the plan for how it should be built, and 

then build it with quality. It allows for a software engineering methodology which is 

in alignment with hardware engineering methods and practices. It forces a discipline 

process to avoid the pressures of writing code long before it is known what is going
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A Sequential Methodology

Analysis
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Implementation

Testing

► Product

Figure 3.1: A Sequential Methodology
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to be built.

Many times, an implementation team  is under pressure to build some code before 

the analysis is completed, only to later discover that the code is not needed or will 

contribute little to the end product. Unfortunately, this early code becomes a costly 

legacy: difficult to abandon and difficult to change. A sequential methodology forces 

analysis and planning before implementation. This is good advice in many software 

engineering situations.

The process forces the analysis team to precisely define their requirements. It is 

much easier to build something if it is known what that something is.

Significant numbers of historical software systems have been built using a sequen

tial methodology. Many past corporations owe their success to one of the many 

sequential methodologies. These successes were in part due to the usage of a formal 

sequential methodology at the time when pressures of change coming from external 

sources were limited.

3 .1 .3  W hy It D o es  N ot W ork

A sequential methodology might fail for many reasons. A sequential methodology 

requires the analysis team to be nearly clairvoyant. They must define ALL details up 

front. There is no room for mistakes and no process for correcting errors after the final 

requirements are released. There is no feedback about the complexity of delivering 

code corresponding to each one of the requirements. An easily stated requirement 

may significantly increase the complexity of the implementation, and it may not even 

be possible to be implemented with today’s technology. Had the requirement team 

known that a particular requirement could not be implemented, they could have 

substituted a slightly different requirement that met most of their needs and could
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have been easier to achieve.

Communication between teams becomes a gating item. Traditionally, the four 

teams may be different and cross-team communication may be limited. The main 

mode of communication are the documents that are completed by one team and then 

passed to another team with little feedback. The requirement team has completed 

the analysis and is disbanded when the implementation team starts. The requirement 

documents can only capture a small fraction of the knowledge and typically do not 

capture any information dealing with quality, performance, behavior, or motivation.

In a fast-moving technology, a sequential methodology builds products tha t, by 

the time they are delivered, may be obsolete. A sequential methodology puts so 

much emphasis on planning, that in a fast-moving target arena, it can not respond 

fast enough to change. There is no early feedback from the customer and customers 

may change their requirements. Frequently, once the customers see a prototype of 

the system, the customers change their requirements.

3.2 A  C yclical M ethodology

3 .2 .1  Introduction

A cyclical m ethodo logy , informally known as the spiral, fixes some of the problems 

introduced by a sequential methodology. A cyclical methodology still has the four 

phases. A little time is initially spent in each phase, followed by several iterations 

over all four phases.

Simply, the methodology iterates over the processes of think a little, plan a little, 

implement a little, then test a little. The document structures and deliverable types 

from each phase incrementally change in structure and content with each cycle or
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iteration. More detail is generated as the methodology progresses. Finally, after sev

eral iterations, the product is complete and ready to ship. The cyclical methodology 

may continue shipping multiple versions of the product. Ideally, each phase is given 

equal attention. See Figure 3.2 on page 33.

3.2.2 W h y It W orks

A cyclical methodology is an incremental improvement on a sequential methodology. 

It allows for feedback from each team about the complexity of each requirement. 

There are stages where mistakes in the requirements can be corrected. The customer 

gets a peek at the results and can feed back information especially important before 

final product release. The implementation team can feed performance and viability 

information back to the requirement team and the design team. The product can 

track technology better. As new advances are made, the design team can incorporate 

them into the architecture.

3.2.3 W h y It D o es  N o t Work

A cyclical methodology has no governors to control oscillations from one cycle to 

another cycle. Without governors, each cycle generates more work for the next cycle 

leading to time schedule slips, missing features, or poor quality. More often than 

not, the length or number of cycles may grow. There are no constraints on the 

requirement team to “get things right the first time.” This leads to sloppy thinking 

from the requirement team, which gives the implementation team many tasks that 

eventually get thrown out.

The architecture team is never given a complete picture of the product and hence 

may not complete a global architecture which scales to full size. There are no firm
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The Cyclical Methodology
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Figure 3.2: A Cyclical Methodology
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deadlines. Cycles continue with no clear termination condition. The implementation 

team may be chasing a continuously changing architecture and changing product 

requirements.

3.3 The W aterSluice

3.3 .1  Introduction

A water sluice is a gold mining technique. Crushed ore and gravel axe mixed with fast 

moving water and then channeled over a long trough with a series of perpendicular- 

to-the-flow slats. Each row of slats gets smaller as the water flows longer in the 

channel. Since gold is heavier than the surrounding rock, the gold nuggets collect 

at these slats. The larger nuggets collect at the bigger slats while the finer specks 

collect at the smaller slats. The sluice separates the valuable gold from the gravel, 

concentrating on the big nuggets first. The final product is a smelt of all the nuggets 

into one gold bar.

See Figure 3.3 on page 35 for a  technical diagram of a gold sluice. Picture courtesy 

of RMS Ross Corporation [112].

Similarly, the W aterS lu ice  software engineering methodology separates the im

portant aspects from the less im portant and concentrates on solving them first. As 

the process continues, finer and finer details axe refined until the product is released. 

The WaterSluice borrows the iterative nature of a cyclical methodology along with 

the steady progression of a sequential methodology.
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3 .3 .2  The P rocess

See Figure 3.4 on page 37 for an overview of the WaterSluice methodology. 

B eg inn ing  th e  P rocess

At the beginning of the project, in an iterative process, the analysis, design, implemen

tation, and test phases are broken into many potential tasks yet to be accomplished 

by team members. Each potential task is assigned a priority by team members. This 

priority reflects the benefit to the final goal of accomplishing the task based on what 

has already been accomplished. The highest priority task is accomplished next. De

pending on the size of the team, multiple high priority tasks may be accomplished in 

parallel. The remaining, lower priority tasks are held for later review. Exactly how 

many tasks or the granularity of the tasks is dependent on the size of the project, the 

size of the team building the project, and the scheduled delivery time for the project.

It is important that the decomposition of the problem is done well, regardless 

of the methodology being used, but especially here in the WaterSluice methodology 

because priority needs to be accessed. The better the decomposition and priority 

setting, the more efficient this methodology will perform. More comments on this 

topic are deferred to a later section. See section C.5 on enabling paradigms located 

on page 188.

I te ra tin g  th e  P rocess

As a result of accomplishing these tasks, new analysis, design, implementation, or 

testing tasks may be discovered. These newly discovered tasks axe then added to the 

known remaining open tasks and again prioritization is required. The next highest 

priority task axe then accomplished.
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The WaterSluice Methodology

A: Analysis 
D: Design 
I: Implementation 
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PI: Proof of Principle 
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P4: Product
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Figure 3.4: The WaterSluice Methodology
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C om ple tion  o f th e  P rocess

This process continues until the product is ready for release.

P r io r i ty  Function

Defining the p rio rity  function  is of high importance. This priority function is 

domain-specific as well as institution-specific, representing trade-offs between quantity 

and quality, between functionality and resource constraints, and between expectations 

and the reality of delivery. The priority function orders the different metrics and their 

values. However, all priority functions should have the product delivery as a high 

priority goal. See Appendix D for a discussion on decision malting.

The priority function serves two goals. One goal is to establish priority. Important 

tasks need to be accomplished first over lower priority tasks. This is the traditional 

role of a priority function.

The second goal of the priority function is to manage conflicting and non-monotonic 

tasks. The priority function needs to divide the tasks into consistent collections. The 

priority function needs to guide the selection of the consistent collection and then 

followed by the selection of the tasks within that consistent selection.

As more and more of the system is established, the priority function is weighted 

to choose tasks that are consistent with the already established system. A non

monotonic task is inconsistent with the established base requiring that some of the 

already accomplished system to be thrown out. The non-monotonic task should not 

be taken, unless the addition of the non-monotonic task is absolutely necessary to 

the success of the entire system. The priority function guides this decision.
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The priority function manages non-monotonic conflicts in the small while, as will 

be established soon, change order control manages non-monotonic conflicts in the 

large.

Focus on th e  G oal

Once a component is completed to the satisfaction of the team, it is placed under 

change-o rder co n tro l. When a component is placed under the change-order control 

process, changes to the component are now frozen. If a change is absolutely neces

sary, and the teams are willing to delay the project to enforce the consequences of 

the change, then the change is fulfilled. Changes should be few, well justified, and 

documented.

Obviously, early in the process, analysis tasks are naturally a high priority. Later 

in the process, testing and quality become a higher priority. This is where the change- 

order control process becomes important. At the beginning of the process all four 

categories of analysis, design, implementation, and testing are available for prioritizing 

and scheduling. At the P1-P2 transition point, see Figure 3.4 on page 37, in the 

process, the analysis phase is subjected to change-order control process. Having the 

analysis phase frozen focuses attention on the remaining three categories of tasks. 

In a similar fashion, at the P2-P3 transition point, see Figure 3.4 on page 37, the 

design phase is frozen and at the P3-P4 transition point the implementation phase is 

frozen. At the final stage only changes that affect quality are allowed. This leads to 

a definition of temporal stages in the methodology, specifying priorities.

Don’t confuse phases with stages. A phase is a grouping of similar activities. A 

stage is a temporal grouping of tasks within phases at particular times. Stages follow 

one another.
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Stages

The main stages are called proof-of-princip le , p ro to ty p e , a lp h a  and b e ta  release, 

and p ro d u c t. With the exception of the proof-of-principle stage, these stages should 

not be new concepts to software engineers. The proof-of-principle stage represents 

the more traditional specification stage. Rapid prototyping offers a similar proof-of- 

principle stage.

P roo f-o f-P rinc ip le  S tag e  In the first stage, the teams work simultaneously on all 

phases of the problem. The analysis team generates requirements. The design team 

discusses requirements and feeds back complexity issues to the requirement team and 

feeds critical implementation tasks to the implementation team. The testing team 

prepares and develops the testing environment based on the requirements.

The implementation team has to be focused on the critical tasks which is usually 

the hardest task. This contrasts the common practice of doing the simple things first 

and waiting until late in the product implementation to tackle the harder tasks. Most 

products that follow this practice end up failing. Once the critical task components 

have been implemented, the system, still a child in the  first period of life, is ready for 

transition to the prototype stage.

One of the goals of this stage is for the teams to convince themselves that a 

solution can be accomplished.

P ro to ty p e  S tage In the second stage, th e  p ro to ty p e  stage, the requirements and 

the requirement document are frozen and placed under change-order control. Changes 

in requirements are still allowed but should be very rare. Any new requirements after 

this point are very costly. Only if the requirement change is absolutely necessary to 

the success of the product, despite the potential delays in the product delivery or cost
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over-runs, is the requirement change allowed. The main idea is to force control on any 

new requirements. This forces the cycle to be completed and enables product delivery. 

The architecture is still allowed to vaxy a little as technology pressures deliver new 

options.

Once the critical tasks are done well, the implementations associated with the 

critical tasks axe expanded to cover more and more of the application.

One of the goals of this stage is for the team to convince non-team members that 

the solution can be accomplished.

At the end of this stage, the process is ready for transition into the alpha and 

beta release stages.

A lpha an d  B e ta  R e lease  S tages In the third stage, the architecture is frozen and 

placed under change-order control. This means th a t no more architectural changes 

are allowed unless they are absolutely necessary. Emphasis is now placed on the 

implementation and quality assurance.

The first version in field release is usually called an a lpha  release, while a second 

release is called the b e ta . The product may be imm ature in the alpha release. Only 

critical tasks have been implemented with high quality. Usually, only a limited num

ber of customers are willing to accept an alpha version of the product and assume 

the associated risk.

During the beta release, enough of the system should be working to convince the 

customer that soon the beta application will be a real product. The beta release is 

more mature and is given to a much laxger customer base.

When enough of the system is built, the system is ready for a transition into the 

next stage: releasing a high quality product.
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P ro d u c t  In the fourth stage, the implementation is frozen and focus is primarily 

on quality. At the end of the stage, the p ro d u c t is delivered.

One of the goals of the last stage is to make the product sound and of high quality. 

No known critical errors are allowed in the final product. Sometimes, there is a gray 

area of definition between a product feature and a product error with the provider 

of the product, most often then not, providing features, while the customers viewing 

some features as errors.

The process is then repeated for the next version of the product.

The WaterSluice allows for phase interactions while at the same time setting firm 

temporal deadlines. The WaterSluice forces all four phases to communicate up front 

and to work together.

The WaterSluice software engineering methodology assumes the presence of five 

levels in a supporting software engineering environment as described in the appendix. 

Versioning is used to move the product from one version to another version by repeat

ing the methodology for each version. Risk management is assumed throughout the 

process. The major components of analysis, the details in the design phase, the four 

main phases of implementation, and levels of testing proceed as previously described.

C h a n g e-O rd e r C o n tro l

C h an g e -o rd e r  c o n tro l is a software engineering process that manages change, or 

lack there of. The process is weighted to prevent change. Tools help to manage this 

process, while senior decision makers accept or decline change decisions. Frequently, 

the senior decision makers are independent of the teams.

Once a component is completed to the satisfaction of the team, it is placed under 

change-order control. When a component is placed under the change-order control
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process, changes to the component axe now frozen. If a change is absolutely neces

sary, and the senior decision makers are willing to delay the project to enforce the 

consequences of the change, then the change is fulfilled. Changes should be few, well 

justified, and documented.

Many change requests axe postponed and incorporated into the next version of 

the product. Some of these change requests contribute to the requirement document 

for the next version, while some contribute to the architecture and implementation. 

Still, others may improve the quality.

3 .3 .3  W hy It Works

There are many things that work well in the WaterSluice methodology. The Wa

terSluice methodology recognizes that people make mistakes and no decision can be 

absolute. The teams are not locked into a requirement or an architecture decision 

that turns out to be wrong or no longer appropriate. The methodology forces ex

plicit freeze dates. This allows for the product to be built and shipped. It forces 

accountability by having decision points where, for the most paxt, things need to 

be completed. The first stage is iterative allowing for the correction of mistakes. 

Even after a portion of the system goes under change-order control, a decision can 

be changed if it is absolutely necessaxy.

The WaterSluice methodology forces the teams to think but does not require the 

teams to be clairvoyant. Sufficient time is allowed for the first stage to establish the 

confidence level needed for success. Communication is emphasized.

The WaterSluice methodology allows for fast interaction, up front, between all 

phases of analysis, design, implementation, and testing. This feeds critical informa

tion between all four phases. The implementation team doesn’t waste time working
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on throw-away code because requirements are validated early in the process for fea

sibility of implementation.

The WaterSluice methodology can respond to market changes more quickly due 

to the iterative nature in each stage allowing requirements to enter and exit at each 

stage. The WaterSluice methodology tries to move all mistakes to the beginning of 

the process, where a restart is not very costly.

3 .3 .4  W hy It D o es  N ot W ork

The WaterSluice methodology forces accountability by having clearly defined stages 

where activities are frozen and placed under change order control. Many people are 

not willing to take that responsibility. For the WaterSluice methodology to work, it 

is necessary to create an environment where taking responsibility and accountability 

for a decision need not be detrimental to the individual if the decision later leads 

to a failure. Otherwise, people will avoid accepting accountability, leading to missed 

goals.

An attitude change towards testing is necessary by the teams since all teams are 

involved in testing from the beginning. The WaterSluice methodology requires that 

people communicate well up front, which is difficult since all four phases represent 

different perspectives. The methodology trades off to ta l flexibility with the reality of 

product delivery.

3.4 C onclusion

In this chapter, three major categories of methodologies were presented: sequential, 

cyclical, and WaterSluice. The sequential and cyclical methodologies, informally
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known as the waterfall and spiral methodologies, are generic in design and have 

been simplified to emphasize a key aspect. In a sequential methodology, the four 

phases of analysis, design, implementation, and testing follow each other sequentially. 

In a cyclical methodology, the four phases of analysis, design, implementation, and 

testing are cycled with each cycle generating an incremental contribution to the final 

system. The WaterSluice is a hybrid borrowing the steady progress of the sequential 

methodology along with the iterative increments of the cyclical methodology and adds 

priority and governors to control change.

A sequential methodology is successful when the complexity of the system is low 

and requirements are static. In a fast-moving technology, a sequential methodology 

builds products that, by the time they are delivered, may be obsolete. A sequential 

methodology puts so much emphasis on planning, that in a fast-moving target arena, 

it can not respond fast enough to change.

A cyclical methodology is an incremental improvement on a sequential methodol

ogy. allowing for incremental feedback between cycles. A cyclical methodology has no 

governors to control oscillations from one cycle to another cycle. Without governors, 

each cycle may generates more work for the next cycle.

The WaterSluice methodology introduced priority, goal-focus. and change-control 

management. A system moves through the states of proof-of-principle. prototype, 

alpha and beta release, and product. In a later chapter it will be shown that a software 

engineering methodology that is goal focused, manages conflicts, and differentiates 

between different priorities is best suited for dynamic non-monotonic environments.
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Established M ethodologies

There axe many established software engineering methodologies. This section con

centrates on several established software engineering methodologies with emphasis on 

the two most known, specifically the Boehm-Waterfall and the Boehm-Spiral method

ology.

4.1 T he Boehm -W aterfall M ethodology

The Boehm-Waterfall software engineering methodology [20] is one of the best known 

example of a softwaxe engineering methodology. The Boehm-Waterfall software en

gineering methodology is composed into the stages of system requirements, software 

requirements, preliminary and detailed design, implementation, testing, operations, 

and maintenance. At each stage is a validation step. In the Boehm-Waterfall software 

engineering methodology, as often quoted and viewed, the process flows from stage 

to stage like water over a fall. However, in the original description of the Boehm- 

Waterfall software engineering methodology, there is an interactive backstep between 

each stage. Thus the Boehm-Waterfall is a  combination of a sequential methodology

46
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with an interactive backstep. However, in engineering practice, the term waterfall is 

used as a generic name to any sequential software engineering methodology.

See Figure 4.1 on page 48 from [20].
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Software Rquirements and Validation

Preliminary Design and Validation

Code, Debug, Deployment, and Test

System Rquirements and Validation

Operations, Maintenance, Revalidation

Test, Preoperations, Validation Test

Detailed Design and Validation

Traditional Waterfall Methodology

Figure 4.1: The Boehm-Waterfall Methodology
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4.2 The B oehm -Spiral M ethodology

The Boehm-Spiral software engineering methodology spiral [22] is a well another 

known examples of a software engineering methodology. See Figure 4.2 on page 50 

from [22].

The Boehm-Spiral software engineering methodology is composed into many stages. 

See Table 4.1 on page 49.

Cycle Step
Cycle 1 - Early Analysis •  Step 1 :

•  Step 2:
• Step 3:
• Step 4:
• Step 5:
•  Step 6 :

Objectives, Alternatives, and Constraints 
Risk Analysis and Prototype 
Concept of Operation 
Requirement and Life cycle Plan 
Objectives, Alternatives, and Constraints 
Risk Analysis and Prototype

Cycle 2 - Final Analysis •  Step 7:
• Step 8 :
•  Step 9:
•  Step 1C
• Step 1 1

Simulation, Models, and Benchmarks 
Software Requirements and Validation 
Development Plan 

: Objectives, Alternatives, and Constraints 
: Risk Analysis and Prototype

Cycle 3 - Design • Step 12
• Step 12

• Step 14
• Step 15
• Step 16

: Simulation, Models, and Benchmarks 
: Software Product Design, Validation, and 

Verification 
: Integration and Test Plan 
: Objectives, Alternatives, and Constraints 
: Risk Analysis and Operational Prototype

Cycle 4 - Implementation 
and Testing

• Step 17

• Step 18
• Step IS
• Step 2C
• Step 21

: Simulation, Models, and Benchmarks

: Detailed Design 
: Code
: Unit, Integration, and Acceptance Testing 
: Implementation (Deployment)

Table 4.1: Boehm-Spiral Methodology Stages 

The processes starts in the center of the spiral. Each completed cycle along
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■
 Traditional 

Spiral

Methodology

1 Objectives, Alternatives, and Constraints
2 Risk Analysis and Prototype
3 Concept of Operation
4 Requirement and Life-cycle Plan
5 Objectives, Alternatives, and Constraints
6 Risk Analysis and Prototype
7 Simulation, Models, and Benchmarks
8 Software Requirements and Validation
9 Development Plan
10 Objectives, Alternatives, and 
Constraints
11 Risk Analysis and Prototype

Figure 4.2: The Boehm-Spiral Methodology

12 Simulation, Models, and Benchmarks
13 Software Product Design, Validation, 
and Verification
14 Integration and Test Plan
15 Objectives, Alternatives, and Constraints
16 Risk Analysis and Operational Prototype
17 Simulation, Models, and Benchmarks
18 Detailed Design
19 Code
20 Unit, Integration, and Acceptance Testing
21 Implementation (Deployment)
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the spiral represents one stage of the process. As the spiral continues, the product 

matures.

In the Boehm-Spiral software engineering methodology, as often quoted and viewed, 

the process spirals from stage to stage, with each spiral getting closer and closer to a 

final solution. However, the Boehm-Spiral software engineering methodology also has 

a steady progress from one stage into the next stage with an explicit review between 

each stage. Thus the Boehm-Spiral is a hybrid of both a sequential and a cyclical 

software engineering methodology. However, in engineering practice, the term spiral 

is used as a generic name to any cyclical software engineering methodology, including 

cycles leading to prototypes and multiple versions.

4.3 Versions

Another important software engineering methodology is versioning where the system 

development is broken down into a series of smaller goals. The system is released in 

a series of versions with each version potentially adding more functionality. Using 

versions develops the system in a sequential manor while, if viewed from the software 

engineering life cycle prospective, a  more cyclical approach is taken. Thus, versioning 

is a hybrid of both a sequential and a cyclical software engineering methodology. See 

Figure 4.3 on page 52.

Each version replays the methodology. Frequently the previous version becomes 

the starting point for the next version. Some features may be deferred to a later 

version. Changes in the requirements that happen in the design or implementation 

phase are usually deferred to a later version. The selection of features in any one 

version is a complex process involving resource constraints, customer requirements,
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Versions

>

Start Version 1 Version 2

Figure 4.3: The Version. Process
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availability of support environments, and availability of skilled people.

Many times, one released version concentrates on quality improvements while the 

following release version concentrates on added functionality. This alternating release 

schedule is common and reflects the difficulty in reaching high product quality before 

product visibility. First the required functionality is released in a version and then, 

after the customers use the version, a new version is released with the newly discovered 

errors fixed. The environments in which the customers use the product may be so 

variable as to preclude exhaustive testing. Of course, exhaustive testing is seldom 

accomplished in any one product.

4.4 The B ooch M ethodology

The Booch software engineering methodology [26] provides an object-oriented devel

opment in the analysis and design phases. The analysis phase is split into steps. The 

first step is to establish the requirements from the customer perspective. This analy

sis step generates a high-level description of the system ’s function and structure. The 

second step is a domain analysis. The domain analysis is accomplished by defining 

object classes; their attributes, inheritance, and methods. State diagrams for the 

objects are then established. The analysis phase is completed with a validation step. 

The analysis phase iterates between the customer’s requirements step, the domain 

analysis step, and the validation step until consistency is reached.

Once the analysis phase is completed, the Booch software engineering methodology 

develops the architecture in the design phase. The design phase is iterative. A logic 

design is mapped to a physical design where details of execution threads, processes, 

performance, location, data types, da ta  structures, visibility, and distribution are
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established. A prototype is created and tested. The process iterates between the 

logical design, physical design, prototypes, and testing.

The Booch software engineering methodology is sequential in the sense that the 

analysis phase is completed and then the design phase is completed. The methodology 

is cyclical in the sense that each phase is composed of smaller cyclical steps. There 

is no explicit priority setting nor a non-monotonic control mechanism. The Booch 

methodology concentrates on the analysis and design phase and does not consider the 

implementation or the testing phase in much detail.

4.5 O bject M odeling Technique (O M T)

The Object Modeling Technique (OMT) software engineering methodology [117] is 

another well known example of a software engineering methodology. The OMT soft

ware engineering methodology deals with object-oriented development in the analysis 

and design phases.

The analysis phase starts with a problem statement which includes a list of goals 

and a definitive enumeration of key concepts within a domain. This problem state

ment is then expanded into three views, or models: an object model, a dynamic 

model, and a functional model. The object model represents the artifacts of the 

system. The dynamic model represents the interaction between these artifacts repre

sented as events, states, and transitions. The functional model represents the methods 

of the system from the perspective of data flow. The analysis phase generates object- 

model diagrams, state diagrams, event-flow diagrams, and data-flow diagrams. The 

analysis phase is now complete.
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The system design phase follows the analysis phase. Here the overall architec

ture is established. First the system is organized into subsystems which are then 

allocated to processes and tasks, taking into account concurrency and collaboration. 

Then persistent data storage is established along with a strategy to manage shared- 

global information. Next, boundary situations are examined to help guide trade-off 

priorities.

The object design phase follows the system design phase. Here the implementa

tion plan is established. Object classes are established along with their algorithms 

with special attention to the  optimization of the path to persistent data. Issues of 

inheritance, associations, aggregation, and default values are examined.

The OMT software engineering methodology is sequential in the sense that first 

comes analysis, followed by design. In each phase, a cyclical approach is taken among 

the smaller steps. The OMT is very much like the Booch methodology where emphasis 

is placed on the analysis and design phases for initial product delivery. Both the OMT 

and Booch do not emphasize implementation, testing, or other life cycle stages.

4.6 R ational O b jectory M eth od o logy

The Rational Objectory [8 6 ], [73] is a full life cycle software engineering method

ology. Rational Objectory is an iterative process governed by requirements manage

ment. Rational Objectory activities create and maintain models to aid the developer 

in supporting the methodology.

The Rational Objectory software engineering methodology can be described in 

two dimensions: time and process components. The tim e dimension represents the 

dynamic aspect of the process and is expressed in term s of cycles, phases, iterations
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Figure 4.4: The Rational Objectory Methodology.

and milestones. The process component dimension is described in term s of process 

components, activities, workflows, artifacts, and workers. See Figure 4.4 on page 56 

from [8 6 ].

4.6 .1  P h ases

The software life cycle is broken into cycles with each cycle working on a  generation 

of the system. The Rational Objectory software engineering methodology divides one 

development cycle into four consecutive phases: inception phase, elaboration phase, 

construction phase, and transition phase. 1

1The temporal ordering o f the inception phase, the elaboration phase, the construction phase, 
and the transition phase in the Rational Objectory corresponds to the proof-of-principle, prototype, 
alpha, beta, and product release stages of the WaterSiuice.
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The Inception P hase

The inception phase establishes the business case for the system and define the sys

tem's scope. The business case includes success criteria, risk assessment, estimate of 

the resources needed, and a phase plan showing dates of m ajor milestones. At the 

end of the inception phase, the life cycle objectives of the project are examined to 

decide whether or not to proceed with the development.

Elaboration Phase

The goals of the elaboration phase are to analyze the problem domain, establish a 

sound architectural foundation, develop the project plan and eliminate the highest 

risk elements of the project. At the end of the elaboration phase, the detailed system 

objectives, scope, choice of an architecture, and the resolution of major risks are 

examined.

The Construction Phase

During the construction phase, a  complete system is iteratively and incrementally 

developed and made ready for transition to the customer community. This includes 

completing the implementation and testing of the software. At the end of the con

struction phase, the operational decision is made.

The Transition P hase

During the transition phase, the software is shipped to the customer. This phase 

typically starts with a “beta release” of the systems. At the end of the transition 

phase, the life cycle objectives are reviewed and possibly another development cycle 

begins.
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4 .6 .2  Iterations

Each phase in the Rational Objectory software engineering methodology can be fur

ther broken down into iterations. An iteration is a complete development loop result

ing in a internal or external system release. Each iteration goes through all aspects 

of software development: requirement capture, analysis and design, implementation 

and testing. 2

The Requirem ents Capture

The requirements capture process describes what the system should do. Requirements 

capture results in a use-case model. The use-case model consists of actors and use- 

cases. Actors represent the customers or another software system. Use-cases represent 

the behavior of the system. The use-case description shows how the system interacts 

step-by-step with the actors. The use-cases function as a unifying thread throughout 

the system’s development cycle. The same use-case model is used during requirements 

capture, analysis and design, and test.

A nalysis and D esign

The analysis and design process describes an architecture that serves as an abstraction 

of the source code and a “blueprint” of how the system is structured. The architecture 

consists of design classes and views. These views capture the m ajor structural design 

decisions. In essence, architectural views are abstractions or simplifications of the 

entire design.

2The iteration of the fundamental phases of analysis, design, implementation, and testing are the 
same as in the WaterSluice methodology though with slightly different emphasis.
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Im plem entation

The system is built during implementation. This includes source-code files, header 

files, make files, and binaries.

Testing

Testing verifies the entire system. Testing includes system level and scenario based 

tests.

4.6 .3  C om parison to  W aterSIuice

The Rational Objectory software engineering methodology is very similar to the Wa

terSIuice software engineering methodology. The temporal ordering of the inception, 

elaboration, construction, and the transition phase in the  Rational Objectory corre

sponds to the proof-of-principle, prototype, alpha, beta, and product release stages 

of the WaterSIuice. The fundamental phases of analysis, design, implementation, and 

testing are the  same in the two software engineering methodologies. The importance 

of each phase in each stage is very similar in the two software engineering method

ologies. Rational Objectory does not have am explicit priority function nor a process 

to manage non-monotonic requirements like the WaterSIuice.

4.7 W in W in  Spiral M ethodology

The WinWin spiral software engineering methodology [25] is a recent example of a 

software engineering methodology. The WinWin spiral software engineering method

ology expands the Boehm-Spiral methodology by adding a priority setting step, the
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WinWin process, at the beginning of each spiral cycle and by introducing intermediate 

goals, called anchor points.

The WinWin process identifies a decision point. For each decision point, the 

objectives, constraints, and alternatives are established and a WinWin condition is 

established. This may require a negotiation among the stakeholders and some recon

ciliations.

The anchor points establish three intermediate goals. The first anchor point, called 

the life cycle objective (LCO), establishes sound business cases for the entire system 

by showing that there is at least one feasible architecture that satisfies the goals 

of the system. The first intermediate goal is established when the top-level system 

objectives and scope, the operational concepts, the top-level system requirements, 

architecture, life cycle model, and system prototype are completed. This first anchor 

point establishes the why, what, when, who, where, how, and cost of the system. At 

the completion of this anchor point, a  high level analysis of the system is available.

The second anchor point, called the life cycle architecture (LCA), defines the life 

cycle architecture. The third anchor point, called the initial operational capability 

(IOC), defines the operational capability, including the software environment needed 

for the first product release, operational hardware and site environment, and customer 

manuals and training. These two anchor points expand the high level analysis into 

other life cycle stages.

The WinWin spiral software engineering methodology is similar to the Water

SIuice. The WinWin process could be considered a WaterSIuice priority function, 

while the anchor points could represent WaterSIuice stages. The WinWin process 

does not explicitly include non-monotonic effects. The anchor points are like the
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m ajor stages in the life cycle of a product: initial development, deployment, opera

tions, maintenance, legacy, and final discontinuation. The first anchor point is close 

to initial development. The second anchor point initiates deployment, while the third 

anchor point starts operations and maintenance.

4.8 C onclusion

These methodologies reviewed in this chapter, are used in today’s software engineering 

practice and appeax to have a positive benefit. They are a considerable improvement 

on not using any methodology at all [99]. The implementors in any case have much 

freedom in terms of thoroughness and tool use. The scale of the issue is such that 

outside of small experiments [105] reliable quantitative measurements of alternative 

methodologies have not been possible.
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Formal Foundations

In this chapter, the formal foundations are presented including the main theorem of 

the thesis. In support of the proof of the main theorem, a series of definitions are 

presented followed by a series of secondary theorems and their corollaries with their 

associated proofs. Results are then summarized.

5.1 A P rev iew  o f  th e  M ain Theorem

T h e o re m  1  Different software engineering methodologies have significant performance 

variations depending on the given environment. A software engineering methodology 

that is goal focused, manages conflicts, and differentiates between different priorities 

is best suited for dynamic non-monotonic environments.

To prove this theorem, formal definitions of software engineering methodologies, 

performance, and environment are now presented. The variations in performance 

of different software engineering methodologies are sufficiently great as to make the

62
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choice of which software engineering methodology to use dependent on the surround

ing environment.

5.2 D efinitions

5 .2 .1  Towards the D efin ition  o f  E nvironm ent

First the environment will be defined. As soon discussed, the environment definition is 

built from the definitions of the analysis, design, implementation, and testing phases. 

Each phase defines a plane which is then defined in term s of atomic, compound, 

and complex steps that may have a sibling relationship. Together the four planes 

form a multi-layered space, either static or dynamic. In some cases, a dynamic space 

may exhibit the non-monotonic property. There are two special steps: the problem 

statement and the system acceptance test. The environment is the multi-layered finite 

space consisting of the analysis, design, implementation, and testing planes with two 

special steps: the initial problem statement and the system acceptance test.

D efin ition  1  (A nalysis) The analysis phase defines the requirements o f the system 

in a declarative fashion, independent of how these requirements will be accomplished.

Section 2 . 2  defined the analysis phase. In summary, the analysis phase defines the 

problem that the customer is trying to solve. The deliverable result at the end of the 

analysis phase is a requirement document. Ideally, the requirement document states 

in a clear and precise fashion what is to be built. The analysis phase represents the 

"what” phase. The requirement document tries to capture the requirements from the 

customer’s perspective by defining goals and interactions at a  level removed from the
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implementation details. The analysis phase was summarized in Table 2.1 on page 6 . 

The analysis phase builds a declarative model of the system.

D efin ition  2 (D esign) The design phase establishes the architecture.

Section 2.3 defines the design phase. In summary, the design phase starts with the 

requirement document delivered by the analysis phase and maps the requirements into 

an architecture. The architecture defines the components of the software system, their 

interfaces and behaviors. The deliverable design document is the architecture speci

fication. The design document describes a plan to implement the requirements. This 

phase represents the “how” phase. Details on computer programming languages and 

environments, machines, packages, application architecture, distributed architecture 

layering, memory size, platform, algorithms, data structures, global type definitions, 

interfaces, and many other engineering details are established. The design may in

clude the reuse of existing components. The design phase is summarized in Table 2.2 

on page 12. The architecture is a high level mapping of the declarative model of the 

system into the imperative model defined by the implementation.

D efin ition  3 (Im p le m e n ta tio n ) In the implementation phase, the system is built.

Section 2.4 defines the implementation phase. In summary, in the implementation 

phase the system is built, performance is enhanced, reusable libraries are established, 

and errors are corrected. The end deliverable is the product itself. In the implemen

tation phase the team builds the components either from scratch or by composition. 

Given the architecture document from the design phase and the requirement docu

ment from the analysis phase, the team should build what has been requested, though 

there is still room for flexibility. The implementation phase ’ epresents an imperative 

model of the system
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D efin ition  4 (T esting) The testing phase improves quality.

Section 2.5 defines the testing phase. Testing is usually based on the regression 

paradigm where current results from a test suite are compared to a gold standard. As 

the testing suite grows the coverage of the system improves and enhances the quality. 

Testing includes internal testing, unit testing, application testing, and stress testing. 

The testing phase is summarized in Table 2.4 on page 19.

D efin ition  5 (S tep ) In each o f the four phases of analysis, design, implementation, 

and testing there are many steps.

Let a i. 0 2 , 0 3 ,  ana be the na requirement steps leading to a possible analysis A.

Let di, c/2 . ^3 ? • • • 7 dnd be the n architecture steps leading to a possible design D. Let 

i i ih i  <3 , • • • ■> In, be the n, implementation steps leading to a possible implementation 

I. Let fj, t2 , t3, . . . ,  tnt be the nt testing steps leading to a possible testing T. A step 

is recursively defined in terms of atomic, compound, and complex steps. A step may 

have sibling relationships with other steps.

D efin ition  6  (A tom ic S tep) An atomic step represents the simplest step with no 

further decomposition.

Let aj be an atomic analysis step then aj has no decomposition. Let dj be an 

atomic design step then dj has no decomposition. Let ij be an atomic analysis 

step then ij has no decomposition. Let tj be an atomic analysis step then tj has 

no decomposition. Each individual step in the analysis, design, implementation, or 

testing phases may be an atomic step.

D efin ition  7 (C om pound  S tep ) A compound step consists of several steps from 

the same layer organized as a hierarchy, or in the most general case, a directed acyclic 

graph (DAG).
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Each individual step in the analysis, design, implementation, or testing phases may 

be a compound step. A compound step can be decomposed into several steps using 

refinement techniques. A compound step may itself be composed of multiple atomic, 

compound, or complex steps. See Figure 5.1 on page 67 for a visual representation 

of a compound step.

Let Oj,, an . . . . .  cijna be the naj compound requirement steps leading to a possible 

analysis a3. Let dn ,dJ2, . . . , d Jndj be the compound architecture steps leading to a 

possible design element dj. Let in , in , . . . ,  be the n, compound implementation

steps leading to a possible implementation component ij. Let £,,, ___tJn be the

n tj compound testing steps leading to a possible testing step t3.
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A Compound Step

The gray ellipse represents a 
compound step.
The black circles represent the 
decomposition steps.
The solid lines define the

Figure 5.1: A Compound Step
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D efin ition  8  (C om plex  S tep) A complex step consists of several steps from dif

ferent layers organized as a hierarchy, or in the most general case, a directed acyclic 

graph (DAG).

Steps in the analysis, design, or implementation phases may together form a com

plex step. In the special case of a testing phase step, the step may be atomic or 

compound but not complex. An analysis step expands into one or more design steps. 

A design step expands into one or more implementation steps. While an implemen

tation step expands into one or more testing steps. These expansions include steps 

to define the parent step as well as sibling steps to support the expansion. The ex

pansions may not be disjoint with other expansion and overlap forming a directed 

acyclic graph. See Figure 5.2 on page 69 for a visual representation of an example 

directed acyclic graph complex step consisting of analysis, design, implementation, 

and testing steps.

Let dh .dn , . . . . d : jmd be the design steps leading to a possible analysis step a_,. 

Let ijt , ij2, . . . ,  ijm be the mi implementation steps leading to a possible design stepxi
dj. Let f jj, fj2, . . . ,  tJrrt' be the mtj testing steps leading to a possible implementation 

step ij.

D efin ition  9 (Sibling S tep  R ela tionsh ip ) Two steps have a sibling relationship 

i f  the two steps have overlapping decomposition and do share a common parent in 

the same layer. Typically, the sibling step is introduced after the decomposition of an 

existing step.

The presence of one step may require the inclusion of several sibling steps. A sib

ling step supports the accomplishment of another sibling step but was not explicitly in 

the decomposition of the parent compound step. For example, steps derived directly
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Figure 5.2: A Complex Step
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from the problem statement fulfill functional requirements. A chosen architecture in 

the design phase tha t supports the functional requirements introduces non-functional 

requirements. A sibling step fulfills these non-functional requirements. See Figure 

5.3 on page 71 for a visual representation of an example sibling relationship.

D efinition 10 (M ulti-layered Space) The analysis, design, implementation, and 

testing steps, either atomic, compound, or complex, form  planes that define a multi

layered finite space.

The na analysis steps a l? a2, <1 3 , . . . , ana leading to a possible analysis A form an 

analysis plane. The n j design steps d1? d2, d^ ,. . . ,  dnd leading to a possible design D 

form a design plane. The n, implementation steps i’i, i2, 13, . . . ,  int leading to a possible

implementation /  form an implementation plane. The n t testing steps ij, t2, £3 ,  tnt

leading to a possible testing suite T  form a testing plane.

Let the space S  be represented as <  A, D, I ,T  > where A is a possible analysis 

of na steps, D is a possible analysis of n j steps, /  is a possible analysis of n, steps, 

and T  is a possible analysis of nt steps. The total number of steps in space 5 is 

na + n j + n{ + n t. This space is finite and bounded because we are dealing with the 

software engineering of only finite and bounded systems. See Figure 5.4 on page 72 

for a visual representation of the multi-layered space.

D efinition 11 (S ta tic  Space) A static space does not change over time.

In a static space, all steps are known before any analysis, design, implementation, 

or testing begins. No new steps enter the space. No existing step leaves the space 

and no step is in conflict with any other existing step.
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Sibling Relationship

Analysis

Design

Testing

Figure 5.3: Two Sibling Steps and their Overlapping Decomposition
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Figure 5.4: Multi-layered Space

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 5. FORMAL FOUNDATIONS 73

Let

S t0 =  < A, D . I .T  >

be the initial space, then 5 is static if

(V tim e t) S* =  S to.

D efin ition  12 (D y n am ic  S pace) A dynamic space changes over time.

In a dynamic space, steps may enter or leave the space at any time. Let

S t0 =  < A. D. I , T  >

be the initial space, 5  is dynamic if

(3 tim e t) ^  S to.

D efin ition  13 (M ono ton ic  P ro p e r ty )  I f  in a dynamic space all newly introduced 

steps are consistent with existing steps, then the dynamic space is said to have the 

monotonic property.

If in a dynamic space when additional steps are discovered, more work may be 

required to accomplish these steps but the newly discovered steps and their associated 

work are consistent additions to the system as defined by the already accomplished 

steps, then the space is monotonic. No part of the system has to be replaced or 

thrown out to accommodate the newly discovered steps.
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D efin ition  14 (N on-m ono ton ic  P ro p e r ty )  I f  a dynamic space contains steps that 

are in conflict with each other, then the space is said to be non-monotonic.

In a non-monotonic space, some steps may be in conflict with other steps. The 

choice of one of these steps will negate the other step even if the  negated step is already 

considered part of the solution. The conflicts are primarily in the analysis plane 

between different requirements. However, conflicts in the design, implementation, 

and testing planes may also exist. Same plane conflicts may also occur.

Consider a non-monotonic conflict within the analysis plane. Let A\ be a collection 

of analysis steps that are consistent with themselves. Let A2 be a collection of analysis 

steps that are consistent with themselves but in conflict with the analysis steps found 

in A i. To accomplish steps A2 one would first have to m itigate conflicting steps 

Ai and visa versa. Let A3 be a collection of analysis steps tha t are consistent with 

themselves and consistent with the analysis steps in Ax and the analysis step in A2. 

There are then two consistent analysis options. Either analysis A is < Ax. A3  >  or A 

is < A2, A3 >  but not both. Similar definitions apply for conflict within the design, 

implementation, and testing planes.

Consider a non-monotonic conflict that crosses many planes. Let Dx be a collection 

of design steps, let I x be a collection of implementation steps, and let T\ be a collection 

of testing steps that are all consistent with At . Let D2 be a collection of design steps, 

let / 2 be a collection of implementation steps, and let T2 be a collection of testing 

steps that are all consistent with A2  but in conflict with Aj, D x, / l7  or Tx. Let D3 

be a collection of design steps, let / 3  be a collection of implementation steps, and let 

T3 be a collection of testing steps that are all consistent with A3  and consistent with 

Ax, Di, /x, and Tx but in conflict with A2, D2, I 2 , and T2. Then either one of the 

following holds but not both.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 5. FORMAL FOUNDATIONS 75

S  — <  Aj, A3, D \, D3. /1 ,13, Tj, T-j >

or

S  =  <  A z ,  A 3. D 2, D 3 ,1 2 .1 3 . T2, T z  >

D efin ition  15 (P ro b le m  S ta te m e n t)  The problem statement is the highest level 

declarative goal of the system.

Above the space, defined by the analysis, design, implementation, and testing 

planes, is the problem statement. The problem statem ent defines, at a very high 

level and abstraction, the declarative goal of the system. The problem statement is 

a requirement but because it is the parent step of all other steps, it is elevated above

the analysis plane to emphasize importance. The problem statement may represent

a compound step. In a dynamic space the problem statement may also change with 

time.

For clarity, a t will represent the problem statement in the remaining sections.

D efin ition  16 (S y s tem  A ccep tance  T est) The system acceptance test indicates 

the readiness of the system for product release.

The system acceptance test is the final step in the testing plane. If the outcome 

of the system acceptance test is acceptable, then the system is ready for product 

release and general customer availability. The system acceptance test verifies that 

the requirements in the problem statement have been satisfied.

For clarity, tnt will represent the system acceptance test in the remaining sections.
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D efin ition  17 (E n v iro n m en t) The environment is the multi-layered, finite space 

consisting o f the analysis, design, implementation, and testing planes with two special 

steps: the initial problem statement and the system acceptance test.

The environment is hierarchical with each node representing an atomic, com

pound. or complex step. The environment may be static or dynamic. See Figure 5.5 

on page 77 for a visual representation of the environment.

To summarize the taxonomy, an environment contains the four disjoint finite 

planes of analysis, design, implementation, and testing. Each plane may contain 

many steps. Each plane contains at least one step. Each step may be atomic, com

pound, or complex. Steps may have sibling relationships. There is a special analysis 

step called the problem statement and a special testing step called the system accep

tance test. See Figure 5.6 on page 78 for a visual representation of the taxonomy.
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Figure 5.5: The Environment
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Figure 5.6: The Taxonomy
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5 .2 .2  Towards the D efin ition  o f  M eth odology

Next we define the methodology, as soon discussed, as an algorithm that finds a 

solution in the given environment of the multi-layered finite space consisting of the 

analysis, design, implementation, and testing plane, starting with the root represented 

by the problem statement and ending with the goal represented by the system accep

tance test. Three classes of methodologies, or algorithms, are presented: sequential, 

cyclical, and the VVaterSluice.

D efinition 18 (S o lu tion) A solution is a tree, or in a more general case, a directed 

acyclic graph, rooted at the problem statement and includes the system acceptance test 

that satisfies all o f the goals in the problem statement.

In a static environment, the solution may include all steps known in the environ

ment. In a dynamic environment, the solution may be a subset. A solution does not 

contain any conflicting steps. The solution represents the final system, complete with 

analysis, design, implementation, and testing. A step visited but not used in the so

lution represents wasted effort. See Figure 5.7 on page 80 for a visual representation 

of a solution.

D efin ition  19 (P a r tia l  S o lu tion ) A partial solution satisfies a consistent collec

tion of goals in the problem statement.

A partial solution does not satisfy all of the goals in the problem statement. If 

some of the goals in the problem statement are in conflict with each other, then only 

a partial solution exists. See Figure 5.8 on page 82 for a visual representation of a 

partial solution.
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A Solution The solid lines represent

Implementation

Figure 5.7: A Solution
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D efin ition  20 (O p tim a l S o lu tion) An optimal solution satisfies all o f the goals in 

the problem statement in an optimal fashion.

If some of the goals in the problem statement are in conflict with each other, then 

no optimal solution exists.

D efin ition  21 (F easib le  S olu tion) A feasible solution satisfies all o f the goals in 

the problem statement but not necessarily in an optimal fashion.

There may be many feasible solutions to a given problem statement. 

A ssu m p tio n  1 The space is finite and of size N.

This thesis deals with software engineering of systems that can be built in a finite 

amount of time with finite resources using finite computers. Thus the assumption of a 

finite space is reasonable. Consider the alternative that the space is infinite. Software 

engineering systems simply can’t be built that require an infinite number of steps.

This introduces the question of the size of this space. What is N?

Let Ni be the number of steps in an optimal solution. Recall that an optimal 

solution satisfies all the goals in the problem statement.

A feasible solution satisfies all of the goals in the problem statement but not 

necessarily in an optimal fashion. A feasible solution has the same starting problem 

statem ent and the same ending system acceptance test as an optimal solution. Let 

iV2 be the upper bound on the number of steps over all feasible solution.

A partial solution satisfies some of the goals in the problem statement. A partial 

solution has the same ending system acceptance test as an optimal solution but 

satisfies only some of the goals of the problem statem ent. Let JV3  be the upper bound
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Figure 5.8: A Partial Solution
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on the number of steps over all permutations and sub collections of the goals from 

the problem statement over all partial solutions.

Define the size of the space to be the upper bound of Nx, N2, and N3.

D efinition 22 (M ethodology) A methodology is an algorithm that finds a feasible 

solution in the given environment of the multi-layered space consisting o f the analysis, 

design, implementation, and testing plane, starting with the root represented by the 

problem statement and ending with the goal represented by the system acceptance test.

The three main categories of software engineering methodologies under investiga

tion are sequential, cyclical, and the WaterSluice.

D efinition 23 (Sequential M ethodology) In a sequential software engineering method

ology, all steps in the analysis plane are completed first, followed by all steps in the 

design plane, followed by all steps in the implementation plane, and then followed by 

all steps in the testing plane.

A more detailed description can be found in Section 3.1. Also see Figure 3.1 on 

page 29 for a graphical representation of a sequential methodology.

D efinition 24 (Cyclical M ethodology) A cyclical software engineering method

ology cycles through each phase a few steps at a time until a feasible solution is 

established.

Simply, a cyclical software engineering methodology iterates over the processes of 

think a little, plan a little, implement a little, then test a little. Finer and finer details 

are generated as the cyclical software engineering methodology progresses. Finally, 

after several iterations, the system is completed.

A more detailed description can be found in Section 3.2. Also see Figure 3.2 on 

page 33 for a graphical representation of a cyclical methodology.
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D efin ition  25 (W aterS Iu ice) The WaterSIuice combines the steady progression of 

the sequential software engineering methodology with the iterative nature of the cyclical 

software engineering methodology while adding priority. Non-monotonic conflicts are 

handled by change order control.

The WaterSIuice software engineering methodology separates the important as

pects from the less important and concentrates on solving them first. As the process 

continues, finer and finer details are refined until the product is released.

A more detailed description can be found in Section 3.3.1. Also see Figure 3.4 on 

page 37 for a graphical representation of the WaterSIuice methodology.

5.2 .3  Towards th e  D efin ition  o f Perform ance

Finally, we define performance, as soon discussed, as the number of steps needed by 

a methodology, an algorithm, to find a solution.

D efin ition  26 (C o m p le te ) I f  a solution exists, and the software engineering method

ology can find a solution for every environment, then the software engineering method

ology is said to be complete.

D efin ition  27 (P e rfo rm an ce) I f  a solution exists, the performance of the software 

engineering methodology is defined as the number of steps needed to find a feasible 

solution.

A step may be atomic, compound, or complex and be in any of the analysis, 

design, implementation, or testing planes. The performance measurement of counting 

steps assumes that on the average each step the same amount of effort. Since the 

performance is an order-of-magnitude measurement, knowledge of the detailed effort
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of each step is not necessary. This assumption is similar to the assumption that all 

instructions take equal time when doing algorithm performance analysis. Of course, 

a more detailed performance measurement could be defined where different weights 

can be used for different steps.

To achieve the best case performance, an environment is created that will allow 

the methodology to find a solution in the least number of steps. In a worst case per

formance, an environment is created that will prevent the methodology from finding 

a solution until the entire environment is visited. In an average case performance, 

environments are created for the methodology that requires a typical number of steps 

to find a feasible solution.
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5.3 Supporting Theorem s

A family of theorems and corollaries are now proven. It will be soon shown that 

all three categories of software engineering methodologies are complete for static 

environments. Only cyclical and WaterSIuice are complete for dynamic environments 

while only WaterSIuice is complete for non-monotonic environments. The best case 

performance of the sequential methodology is 0(N ). The best case performance of 

the cyclical and the WaterSIuice methodology is 0(1). The worst case performance 

of all three categories of methodologies axe the same. On average the sequential 

methodology will find a solution in 0 (N), the cyclical methodology will find a solution 

in 0(N), 1 and the WaterSIuice will find a solution in an order-of-magnitude less than 

N.

5.3.1 Sequential Softw are E ngineering M eth od o logy

In this section, a family of theorems are presented that pertain to the sequential soft

ware engineering methodology. The sequential software engineering methodology will 

find solutions in static environments but not in dynamic environments. If a solution 

exists, and the sequential software engineering methodology finds the solution, the 

best case performance is 0 { N ), the worst case performance is 0 (N ),  while the average 

case performance is 0 {N )  where N is the total number of steps in the environment.

T heorem  2  (S equen tia l: S ta tic  C om ple te) A sequential software engineering method

ology is static complete.

1A more accurate average performance measurement for a cyclical software engineering method
ology is N/2.
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Let a l? a2, a3, . . . ,  a n<1 be the na requirements leading to a possible analysis .4 

with at the initial problem statement. Let dj, d2, d3, . . . ,  d„d be the architecture 

elements leading to a possible design D. Let it, i2, z3, . . . .  zn, be the rz, implementation 

components leading to a possible implementation I . Let <i. J2, f3, . . . ,  f„e be the nt 

testing suites leading to a possible testing T  with tnc being the final system acceptance 

test. Define a static environment that consists of the four planes of analysis, design, 

implementation, and testing with each lower plane being a refinement of the higher 

planes. Define the solution as the tree, or in a more general sense, the directed acyclic 

graph, of all steps from all four planes used in the final system. This solution can be 

represented as a sequence of steps <  A, D, I .T  >.

See Figure 5.5 on page 77 for a visual representation of the static  environment. 

See Figure 5.9, Figure 5.10, and Figure 5.11, on pages 88 through 90 for a visual guide 

of the reasoning. The numbers associated with the steps represent the order visited 

by the methodology.

P roof 2.1 A sequential software engineering methodology leads to a sequence of steps, 

step 1:

S l = < a t >

step 2;

S 2 =  < ax,a2 >

step na:

Sna = < a u a2, 
=  < A >
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Sequential: Beginning

Analysis

Implementation

0  completed step . visited but not included the solution the order visited.

Figure 5.9: Sequential: Beginning
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Sequential: Intermediate

Implementation

included in the solution 
visited but not included the solution the order visited.

Figure 5.10: Sequential: Intermediate
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Sequential: Final

Implementation

included in the solution 
visited but not included the solution the order visited.

Figure 5.11: Sequential: Final
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step na +  rid-'

5 ».+n* =  <  A ,d i ,d 2,  dnd >
= < A . D >

step na + rid + ni:

S na+nd+n' =  <  A, £>, i' 1, i2, - - -, in. >
=  <  A. D, I  >

step na + rid + rc, +  nt:

S na+nd+n.+nt =  < A  D  ̂ t u  ^  ^

= < A, D .I ,T  >

The sequence represented by < A, D, I , T  > is the solution.

These steps find a solution where steps at the higher levels are exhausted first before 

going into lower levels. I f the environment is static, then all steps in the environment

are known before the sequential methodology begins. The sequential methodology first

discovers all steps in the analysis plane, followed by all steps in the design plane, 

followed by all steps in the implementation plane, and then followed by all steps in 

the testing plane. This can be accomplished because the environment is static and 

finite. Eventually in the static environment the solution is discovered. Thus, the 

sequential software engineering methodology is static complete.

C oro lla ry  2 . 1  (S equen tia l: B e s t C ase) The best case performance o f the sequen

tial software engineering methodology is O(N).
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P ro o f  2.1.1 Let the environment consist of na analysis steps, nj design steps. nt 

implementation steps, and nt testing steps. Let the system acceptance test be the very 

fist step in the testing plane 11 . The number of steps to find a solution is na + n j + n, +  L 

which is O(N).

C oro lla ry  2.2 (Sequential: W o rs t Case) The worst case performance o f the se

quential software engineering methodology is O(N) where N  is the size o f the space.

P ro o f  2.2.1 Let the environment consist of na analysis steps, n d e s ig n  steps. nt 

implementation steps, and n t testing steps. Let the system acceptance test be the very 

last step tnt. The number o f steps to find a solution is na + n j + n{ +  n t which is 

O(N).

C oro lla ry  2.3 (Sequential: A verage  Case) The a verage case performance o f the 

sequential software engineering methodology is O(N) where N  is the size o f the space.

P ro o f  2.3.1 Let the environment consist of na analysis steps, nj design steps, n, 

implementation steps, and n t testing steps. Let the system acceptance test be the 

(nt )/2 step in the testing plane £(n,)/2 - The number of steps to find a solution is 

na +  +  n, +  (rif)/2 which is O(N).

C oro lla ry  2.4 (Sequential: D y n am ic  In co m p le te ) The sequential software en

gineering methodology may not find a solution in a dynamic environment.
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In a sequential software engineering methodology, all of the high level steps are 

exercised before proceeding to the next plane of the space. If a new step is introduced 

once the sequential software engineering methodology has finished with this plane 

of the environment, the new step will not be part of the solution. The sequential 

methodology will no longer be able to find the solution.

Let the initial environment consist of n3 analysis steps, n j design steps, n, imple

mentation steps, and nt testing steps.

P ro o f 2.4.1 At step na +  1 the sequential software engineering methodology has ac

complished the steps < a i .a 2 ,  , a„a, d\ > . At this time introduce a new requirement

ana+l. The sequential software engineering methodology has already finished with the 

analysis plane and will not discover this new requirement. Thus, a sequential software 

engineering methodology is dynamic incomplete.

C oro llary  2.5 (Sequential: N on-m ono ton ic  In co m p le te )  The sequential soft

ware engineering methodology may not find a solution in a non-monotonic environ

ment.

P ro o f  2.5.1 The sequential software engineering methodology is incomplete in dy

namic environment and thus incomplete to dynamic environments with the non

monotonic property.
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5.3 .2  C yclical Software E ngineering M ethodology

In this section, a family of theorems are presented that pertain to the cyclical software 

engineering methodology. The cyclical software engineering methodology will find 

solutions in both static and dynamic environments but not in dynamic environments 

that have the non-monotonic property. If a solution exists, and the cyclical software 

engineering methodology finds the  solution, the best case performance is 0 ( 1 ). the 

worst case performance is 0 ( N ), while the average case performance is 0 ( N)  2 where 

N is the total number of steps in the environment.

T heo rem  3 (C yclical: S ta tic  C o m p le te ) A cyclical software engineering method

ology is static complete.

Let a l ,a 2 7 a 3 r  °na be the na steps leading to the possible analysis A  with ret

being the initial problem statement. Let eh, d2, . . . ,  dnd be the rii steps leading to the 

possible design D. Let i’i , i2,  ini be the re, steps leading to the possible implemen

tation I. Let t i . t 2,  tnt be the n t steps leading to the possible testing T  with tnt

being the final system acceptance test. Though this static environment includes the 

same steps as in the other sections, these steps are not necessarily taken in the same 

sequence as those established in the other sections but are the sequence taken by a 

cyclical methodology. A cyclical methodology has a simple selection process which 

defines this order. Define a static environment that consists of the four planes of 

analysis, design, implementation, and testing with each lower plane being a refine

ment of the higher planes. Define the solution as the tree, or in a more general sense, 

the directed acyclic graph, of all steps from all four planes used in the final system. 

This solution can be represented as a sequence of steps. See Figure 5.5 on page 77 for

2To be more precise, the exact performance is N /2 .
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a visual representation of the environment. See Figure 5.12 on page 96 for a visual 

guide of the reasoning. The numbers associated with the steps represent the order 

visited by the methodology.

P ro o f  3.1 /I cyclic methodology leads to this sequence o f steps.

step 1 : Initial problem statement.

S l =  <  ai >

step 2 :

S 2 =  <  a i, a2 >

step 3:

S 3 = < a l? a2. di >

step 4:

S 4 =  < a i,a 2 ,d i . i i  >

step 5:

S = < ax? d \ . i i, 11 >

The last step:

5 n0 +ad+n,+nt =  < au a2 ,d u i u . . .  ,ana, tnt >
=  < A .D , I , T  >

The last step is the system acceptance test. Thus a cyclical methodology is static 

complete.
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Cyclical: Final

Analysis

Implementation

included in the solution 
visited but not included the solution the order visited.

Figure 5.12: Cyclical: Final
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These steps are generated in an iterative fashion and eventually exhaust the static 

environment.

If the environment is static, then all steps in the environment are known before the 

cyclical methodology begins. The cyclical methodology discovers steps in an iterative 

fashion in the analysis plane, the design plane, the implementation plane, and the 

testing plane. This iterative discovery of steps from all four planes continues until 

the environment was exhausted.

C oro lla ry  3.1 (C yclical: B est C ase) The best case performance o f the cyclical 

software engineering methodology is 0 (1 ).

P ro o f 3 .1 .1  Let the environment consist o f na analysis steps, nj design steps, n, 

implementation steps, and nt testing steps. Let the correct analysis step be the very 

first step a t . Let the coi~rect design step be the very first step d\. Let the correct 

implementation step be the very first step i j. Let the system acceptance test be the 

very first step t\. To satisfy the problem statement would require one analysis, one 

design, one implementation, and one testing step. In this environment, the cyclical 

software engineering methodology will require only four steps. Thus the performance 

is 0 (1 ).

C oro llary  3.2 (C yclical: W orst C ase) The worst case performance o f the cyclical 

software engineering methodology is O(N) where N  is the size o f the environment.

P ro o f 3 .2 .1  Let the environment consist o f na analysis steps, n4 design steps, rii 

implementation steps, and n t testing steps. Let the system acceptance test be the very 

last step tnt. The number of steps to find a solution is na + nj, +  n:- +  n t which is

O(N).
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Corollary 3.3 (Cyclical: A verage Case) The average case performance o f the 

cyclical software engineering methodology is 0(N )  3 where N is the size of the space.

P roof 3.3.1 Let the environment consist of na analysis steps, design steps. n l im

plementation steps, and n t testing steps. On average, the system acceptance would be 

in the middle of the testing plane tnc/2. On average, the cyclical software engineering 

methodology would only have to discover half o f the analysis, design, implementa

tion, and testing steps. That is to say, half the time the cyclical software engineering 

methodology discovers less than half o f the space to find a solution and half the time the 

cyclical software engineering methodology discovers more than half o f the space to find 

a solution. The number o f steps to find a solution is (ra„)/2 +(n«/)/2 +  (nt-)/2 + ( n t)/2 

which is N/2 steps. Thus, the performance is O(N). 4

Corollary 3.4 (Cyclical: D ynam ic C om plete) A cyclical software engineering method

ology is dynamic complete.

P roof 3.4.1 A cyclical methodology allows for the introduction o f new information 

at every cycle and the removal o f information that is no longer needed. Thus, for  

a dynamic environment, a cyclical software engineering methodology will eventually 

find the solution.

Corollary 3.5 (Cyclical: N on-m onotonic Incom plete) A cyclical software en

gineering methodology is non-monotonic incomplete.

3 To be more precise, the exact performance is N /2 .
4 To be more precise, the exact performance is N /2 .
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P ro o f  3.5.1 The cyclical software engineering methodology has no mechanism to 

manage a non-monotonic step. Consider a dynamic environment with two highly con

flicting requirements and their associated design, implementation, and testing steps. 

The cyclical software engineering methodology would pick one requirement and build 

the associated system. The cyclical software engineering methodology, because there 

is no mechanism to manage a non-monotonic step, then picks the second conflict

ing requirement. The first solution is negated in order to build a second system. The 

cyclical software engineering methodology oscillates between these two systems with no 

con vergence to a common solution. The final system acceptance test fails because one 

of the conflicting requirements can never be accomplished. Thus, the cyclical software 

engineering methodology is incomplete for a non-monotonic environment.

A n E xam ple  o f C yclical N on-feasib le  S o lu tion

Many applications are partitioned into the three major components: user interface, 

application logic, and a database. The visible component of the application to a 

customer is the user interface. The other two components have no visibility to the 

customer and are hidden. In many cases the customer's mental model of the appli

cation is totally user-interface centric. To the customer, the application is the user 

interface.

Tools exist today to easily craft user interfaces. These tools ignore the building of 

the application logic and databases. The application logic and databases are crafted 

using more traditional techniques accomplished by trained individuals. An inexperi

enced programmer is easily convinced that the application is totally done when only 

the user interface is completed.

The problem comes when an inexperienced team  is using one of these user interface
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tools along with the customer. Both the inexperienced team and the customer have 

highly slanted, user interface centric, mental models of the application. The team 

and the customer could spend hours working on very minuscule details of the user 

interface design by quickly iterating between different user interface designs. Yet 

the application logic and the supporting database may get no attention. Both the 

customer and the inexperienced team come to the false impression that they are near 

completion of application when the user interface is completed. They are stuck on 

user interface design details without getting a global picture of the entire application 

that includes application logic and a database.

Much later in this process the discovery could be made that the application logic 

and supporting database may be impossible to implement given the current user 

interface. Hours of user interface design could have been avoided if a more global 

view of the application had been introduced earlier.

A cyclical methodology refines some details early in the process without having a 

global view of the entire search space. In this case, the user interface was explored in 

detail without much attention to the application logic or the database design. This 

gives a false impression of near completion and progress even though the solution is 

stuck at a non-feasible position that excludes m ajor components of the application. 

The important requirements of application logic and the database were missed until 

late in a cyclical methodology.
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5.3.3  W aterSIuice Software E ngineering M ethodology

In this section, a family of theorems axe presented that pertain to the WaterSIuice 

software engineering methodology. The WaterSIuice software engineering methodol

ogy will find solutions in static environments and dynamic environments including 

dynamic environments that have the non-monotonic property. If a solution exists 

and the WaterSIuice software engineering methodology finds the solution, the best 

case performance is 0(1), the worst case performance is O(iV), while the average case 

performance is an order-of-magnitude less than N where N is the total number of 

steps in the environment.

T heorem  4 (W aterSIuice: S ta tic  C om ple te) The WaterSIuice software engineer

ing methodology is static complete.

Let ai, a2 , <*3 , - . . .  a„a be the na steps leading to the possible analysis .4 with at 

being the initial problem statement. Let d i , d2, . . . ,  dn<t be the nj steps leading to the 

possible design D. Let i2. . . . ,  be the n, steps leading to the possible imple

mentation I. Let t i , t 2, . . .  . t nt be the nt steps leading to  the possible testing T  with 

tn< being the final system acceptance test. Define an environment that consists of 

the four planes of analysis, design, implementation, and testing with each lower plane 

being a refinement of the higher planes. In this environment priorities are represented 

as different in the size of a step. A larger circle represents a higher priority than a 

smaller circle. Define the solution as the tree, or in a more general sense, the directed 

acyclic graph, of all steps from all four planes used in the final system. Define a pri

ority queue of possible next steps PQ. Initially the priority queue PQ  contains the 

initial step ax represented by the sequence S l . Define a function, next, over all possi

ble steps, which generates ail possible next steps given the  current solution sequence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 5. FORMAL FOUNDATIONS 102

evaluates the total value, and pushes the ordered result onto the priority queue PQ. 

Only high priority steps axe keep in the queue PQ. See Figure 5.13 on page 103 for 

a visual representation of the space. Here a larger circle represents a higher priority 

step. See figures 5.13, 5.15, 5.16, 5.17. and 5.18 on pages 103 through 108 for a visual 

guide of the reasoning. The numbers associated with the steps represent the order 

visited by the methodology.

P ro o f  4.1 The W aterSluice methodology leads to this sequence o f steps, 

step 1; Initial set up.

PQ =  ai

step 2: Remove ax from the priority queue PQ. Expand all alternative steps near

a x using the function next and push them onto the priority queue PQ.

PQ =  a2, a3

5 1 = a\

At this stage there are two alternative next steps. Pick the next step with the 

highest priority. For clarity, assume this step is a2.

step 3:

PQ =  a3, a4

5 2 =  a \ , a2
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A Priority Based Space

Analysis

Design

Implementation

% potential step 0 completed step included in the solution

high priority

Figure 5.13: Priority Based Space
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WaterSluice: Proof of Principle

Analysis

Design

Implementation

Testing
10

included in the solution§  potential step §  completed step

high priority ■  i |  |  low priority A numbered step represents the order visited.

Figure 5.14: WaterSluice: Proof of Principle
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WaterSluice: Prototype

Analysis

Implementation

10
% potential step §  completed step   included in the solution

high priority Q  Q  §

Figure 5.15: WaterSluice: Prototype
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WaterSluice: Alpha

Analysis

Testing
10

0  potential step 0  completed step   included in die solution

high priority ^  Q  Q  §

Figure 5.16: WaterSluice: Alpha
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WaterSluice: Beta

Analysis

Implementation

Testing
10

included in the solution0  potential step Q completed step

high priority• • •• low priority A numbered step represents the order visited.

Figure 5.17: WaterSluice: Beta

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 5. FORMAL FOUNDATIONS 108

WaterSluice: Product

Analysis

Design

Implementation

Q potential step Q completed step

high priority

Figure 5.18: WaterSluice: Product
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step 11; The methodology is now at the proof o f principle stage.

PQ  =  <*12

5 11 = <*i ,<*2 ,<*3 ,<£»,*5 ,£6 ,<̂ 7 ,£8 , *9 ,^1 0 , £11

step 15: The methodology is now at the prototype stage.

PQ  =  0 1 6 ,0 2 1  

S 15 =  f l i ,  <Z2* <*3, <^4, * 5 , te-i di, t%. 

ig, t i o ,  t i l ,  d 1 2 , <13, ^14

step 24; The methodology is now at the alpha stage.

PQ  =  * 2 6 , *28, *29, *30 

S  =  f l l , 0 2 ,  O3 , <^4, * 5 , ^ 6 , d j , f g ,

* 9 ,^ 1 0 ,t 11, d\2- * 1 3 ,t 1 4 , 

^15, <*16, <^17, <^18, *19 , *20, 

<*21, <^22, ^23, 124
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step 32: The methodology is now at the beta stage.

PQ  =  I33

i>15 = ctj, <*2? <*3, <̂4, *5. 6̂? d~. t$.

*9 , 110 , tn.dl2, * i3 , 114, 

t i s ,  ® 16, dir,  d i s ,  * 1 9 , *2 0 ,

a2i .d22, t23 , t24,

^2 5 ? 126, h~,  *2 8 ?

*2 9 ? *3 0 , ^3 1 ,^ 3 2

step na + rid +  **i +  **i- The priority queue contains the last step o f the final system  

acceptance test.

Thus, the WaterSluice software engineering methodology is static complete.

The WaterSluice software engineering methodology uses priority to guide the pro

cess combined with the iterative mechanism found in a cyclical methodology and gov

erned by the steady progression found in a sequential methodology. If the environment 

is static, then all steps in the environment are known before the WaterSluice software 

engineering methodology begins. The WaterSluice software engineering methodology 

first discovers high priority steps from the analysis plane, the design plane, the im

plementation plane, and the testing plane. As higher priority steps are discovered 

and visited, they are eventually exhausted. This allows the lower priority steps to be 

visited. The WaterSluice software engineering methodology continues until the only 

remaining step to visit is the lowest possible priority step.
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C o ro lla ry  4.1 (W aterS lu ice: D ynam ic  C om ple te) The WaterSluice software en

gineering methodology is dynamic complete.

P ro o f  4.1.1 The WaterSluice software engineering methodology allows for the intro

duction of new information at every step and the removal of information that is no 

longer needed. Recall the presence o f the priority queue. When steps are placed on 

the priority queue, the queue is rearranged. Low priority steps migrate to the end 

o f the queue while high priority steps migrate to the beginning o f the queue. Regard

less o f when a high priority item is discovered, the methodology will be able to react. 

For a dynamic environment, the WaterSluice software engineering methodology will 

eventually find the solution.

C o ro lla ry  4.2 (W aterS lu ice: N on-m onoton ic  C o m p le te ) The WaterSluice soft

ware engineering methodology is non-monotonic complete.

P ro o f  4.2.1 The WaterSluice software engineering methodology allows for the in

troduction of new information at every step and the removal o f information that is 

no longer needed. Define a priority function that takes into account non-monotonic 

steps. Consistent steps are assigned similar high priority. Non-consistent steps are 

assigned lower priority. When steps are placed on the priority queue, the queue is 

rearranged. Low priority steps migrate to the end o f the queue while high priority 

steps migrate to the beginning o f the queue. Regardless o f when a high priority item 

is discovered, the methodology will be able to react. For a non-monotonic space, the 

WaterSluice software engineering methodology will eventually find the solution leaving 

behind the conflicting steps.
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C orollary  4.3 (W aterS lu ice : B est C ase) The best case performance o f the Wa

terSluice software engineering methodology is 0(1).

P ro o f 4.3.1 Let the environment consist o f n a analysis steps, n j design steps, n, 

implementation steps, and n t testing steps. Let the correct analysis step be the very 

first step ax. Let the correct design step be the very first step d\. Let the correct imple

mentation step be the very first step ix. Let the system acceptance test be the very first 

step <i. To satisfy the problem statement would require one analysis. one design, one 

implementation, and one testing step. In this environment the WaterSluice software 

engineering methodology will require only four steps. Thus the performance is 0(1).

C orollary  4.4 (W aterS lu ice : W orst C ase) The worst case performance of the 

WaterSluice software engineering methodology is O(N) where N  is the size of the 

environment.

P ro o f 4.4.1 Let the environment consist o f n a analysis steps, n j design steps, n, 

implementation steps, and n t testing steps. Let the system acceptance test be the 

lowest priority step tnt. The number of steps to find a solution is na + rt  ̂+ n, + nt 

which is O(N).

C orollary  4.5 (W aterS lu ice : A verage C ase) The average case performance o f 

the WaterSluice software engineering methodology is an order-of-magnitude less than 

N where N  is the size o f the environment.

P ro o f 4.5.1 Let d be the depth o f the space. In the special case o f this space d is 4- 

Let b be the average fan out o f a step in the space if there was no priority function. 

I f  the space has N  steps then
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N  =  6° +  61 +  b2 +  • - • +  bd.

To a reasonable approximation, only the last term is significant and

N  % bd.

Consider the addition o f a priority function. The best case priority function would 

guide the algorithm directly to a solution. In this case, the fan out would be 1 and the 

total number o f steps would be 0(1). A worst case priority function would not guide 

the algorithm. Thus the fan out would be b and the total number o f steps would be 

0(N). In the average case, the priority function would trim the fan out by half. Thus

N- * average

On average the performance of the algorithm is an order-of-magnitude less than

N.
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Methodology Static Complete Dynamic Complete Non-monotonic Complete
sequential yes no no
cyclical yes yes no
WaterSluice yes yes yes

Table 5.1: Summary of Completeness

Methodology Best Worst Average
sequential 0{ N) O( N) 0 ( N)
cyclical 0 (1 ) O( N) 0 ( N)
WaterSluice 0 (1 ) O( N) order-of-magnitude less than N

Table 5.2: Summary of Performance

5.4 Sum m ary R esu lts from  the M ain  Theorem

T heo rem  1 Different software engineering methodologies have significant performance 

variations depending on the given environment. A software engineering methodology 

that is goal focused, manages conflicts, and differentiates between different priorities 

is best suited for dynamic non-monotonic environments.

The proceeding theorems and corollaries generate several key results:

• All three categories of software engineering methodologies are complete for static 

environments. See Theorems 2, 3, and 4.

• Only cyclical and WaterSluice are complete for dynamic environments. See 

Corollaries 2.4, 3.4, and 4.1.

•  Only WaterSluice is complete for non-monotonic environments. See Corollaries 

2.5, 3.5, and 4.2.

• The best case performance of sequential software engineering methodology is 

0(N ). See Corollaries 2.1.
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• The best case performance of cyclical and WaterSluice software engineering 

methodologies is 0(1). See Corollaries 3.1. and 4.3.

• The worst case performance of all three categories of methodologies are the 

same. See Corollaries 2.2, 3.2, and 4.4.

• On average, the sequential methodology will find a solution in 0 (N ). See Corol

lary 2.3. On average, the cyclical methodology will find a solution in 0(N). ’ 

See Corollary 3.3. On average, the WaterSluice will find a solution an order-of- 

magnitude less than N. See Corollary 4.5.

The observations are summarized in Table 5.1 on page 114 and Table 5.2 on page 

114.

5A more accurate average performance measurement for a cyclical software engineering method
ology is N/2.
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An Analogy w ith  Search

The formal foundation chapter presented results on methodologies and their perfor

mance in various environments. These results are analogous to similar results from 

search theory. See [82], [84], [83], and [98].

6.1 Search Background

There are three well-known search algorithms: b read th -firs t, d ep th -firs t, and 

b est-first. The basic background of these three algorithms are presented along with 

their accompanying search space.

In a b rea d th -firs t algorithm, the search is concentrated at the high level and 

not until a solution is found at this level does the algorithm go deeper into the lower 

levels. This algorithm is queue-based, and almost the entire search space needs to 

be searched before an answer is found. On the average, this algorithm is O(N) in 

complexity where N is the number of nodes in the tree representing the search space. 

Best case performance for a breadth-first algorithm is and worst case performance 

are O(N).

116
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In a d e p th -f irs t algorithm, the search is concentrated at the lower levels. This 

algorithm is stack-based, and a potential solution may be found early in the search. 

The worst case performance is no better than a breadth-first algorithm, but on av

erage a depth-first algorithm will find a feasible solution quicker. On the average, 

this algorithm is 0 (N ) in complexity where N is the number of nodes in the tree 

representing the search space. Best case performance for a depth-first algorithm is 

0(1). while worst case performance is 0 (N ).

The depth-first algorithm has a problem around sections of the tree that represent 

near solutions. The algorithm will get stuck on a local optimum and not find the best 

solution until much later in the search. This problem is called hill climbing.

In a b e s t-firs t algorithm, the search is concentrated on the next best move. All 

next moves are prioritized by looking one move ahead and only the next best move is 

taken. After each move, additional moves may be possible and are added to the list 

of candidates. The process continues until an optimum solution is found. The search 

space is searched in a jumping fashion as the algorithm hops between different areas 

of higher interest. This algorithm is based on a priority queue that is usually based 

on a partial order tree.

The best known of the best-first algorithms is called A*. The priority functions 

are split into two components. One represents the known cost to get to a node in the 

search space while the other represents the estimated cost of continuing towards the 

goal. The estimated cost must be positive and must be an underestimation of the 

actual cost. It can be shown that A* is the best of all best-first search algorithms. 

The A* algorithm is more complex because it requires the definition of the priority 

function. On the average, this algorithm is an order-of-magnitude less than N in 

complexity where N is the number of nodes in the tree. Best case performance for a
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best-first algorithm is 0(1), while worst case performance is 0 (N ).

There is an interesting tradeoff between the cost of visiting a node in the search 

space and the cost of calculating the priority function. If the search space is small, 

inexpensive to traverse, and the cost of calculating the priority function is expensive, 

then the depth-first and breadth-first algorithms may have better total performance 

over the best-first algorithm. The cost of calculating the priority function can be 

controlled by varying the quality of the answers returned by the priority function. If 

the search space is complex and large, then the cost of calculating a precise priority 

function is negligible. On the other hand, some situations call for a cheap priority 

function. In the limiting case, the priority function could be simply that all next 

steps have the same priority and the algorithm becomes a breadth-first algorithm. 

Alternatively, the priority function could reflect the depth of the search space and 

the best-first algorithm would behave like a depth-first algorithm.

These search algorithms use a search space. A search space consists of a collection 

of nodes or states. There are two special states called initial and goal. There is 

a function that walks the search space using the primitive next step. Optionally, 

the states may be labeled for later reference. The path from initial state to the 

goal state is called the solution. Between a state and its reachable next states are 

associated costs. Only the best-first algorithm uses this cost information for other 

than summation or report generation reasons. In general, the algorithms produce a 

directed acyclic graph as a result of the search.
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6.2 A nalogy: Search and M ethodologies

These search algorithms and their accompanying search space can be extended to 

apply to software engineering methodologies. By analogy, a sequential methodology 

can be compared to a breadth-first search algorithm, a cyclical methodology to a 

depth-first search algorithm, and the WaterSluice methodology to a best-first search 

algorithm.

A solution in search space is the path from the initial node to the goal node. Many 

nodes visited may not be included in the solution path. On the other hand, a solution 

in software engineering methodology space is the entire DAG necessary to go from 

the initial problem statement to the final acceptance test.

Since the space is much larger than the solution path it is imperative to prune 

the search as much as possible. Pruning is affected by dynamic and non-monotonic 

considerations when the entire search space cannot be pre-composed.

6.3 C onclusion

The results in this thesis on methodology performance are analogous to the associated 

results in search theory. All three search algorithms are complete for a static search 

space. The differences appear when the search space is dynamic. A breadth-first 

search algorithm may miss a solution. Both a depth-first search algorithm and a best- 

first search algorithm will find a solution in a dynamic search space. In some cases, 

the best-first search algorithm will find a solution in less than or equal time to the 

other two methodologies. The worst case performance of all three search algorithms 

are the same. On average, the breath-first search algorithm will find a solution in 

0(N ). On average, the depth-first search algorithm will find a solution in O(N). On
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average, the best-first search algorithm will find a solution is an order-of-magnitude 

less than N.
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Project Surveys

Since a realistic quantifiable experiment on software engineering methodologies can

not be carried out, this chapter presents projects from the author’s and colleagues 

experiences. These experiences help formulate and substantiate the formal work of 

this thesis.

7.1 In troduction

In this chapter, a survey form is presented. This survey form will help guide the 

classification of various software engineering methodologies and their usage in a va

riety of projects. The survey form is then completed for the three main categories 

of sequential, cyclical, and WaterSluice software engineering methodologies. Survey 

forms for the Boehm-waterfall and the Boehm-spiral are also completed. Several soft

ware engineering projects are then presented along with their software engineering 

methodology and completed survey form. Because there is a very limited number of 

publications of real-life software engineering methodology usage, most of the exam

ple projects are from the author’s experiences. Several projects are from well known

121
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systems such as Ada, UNIX, and X.

This survey is intended as an aid in understanding software engineering method

ologies. This survey is not presented as the ultim ate, definitive, scientific classification 

schema for software engineering methodologies.

7.2 The Survey

The survey is a series of questions with a choice of alternative answers. The survey is 

also presented in a summary tabular form. An accompanying information page helps 

to clarify some of the questions and response options.

7.2.1 Software Engineering M eth od o logy  P hases

The first section of the survey deals with methodology phases and their usage. There 

are four main phases of analysis, design, implementation, and testing. The analysis 

phase establishes the requirements. The design phase establishes the architecture. 

The system is built in the implementation phase while quality is assured in the testing 

phase. See the sections on analysis, design, implementation, and testing in table 7.1 

on page 124.

7.2 .2  Software Engineering M eth od o logy  C om position

The next section of the survey deals with the composition of the four main phases. 

ADIT is an acronym for analysis, design, implementation, and testing composed in 

that order. There may be many cycles of ADIT.

In each phase, the alternatives may be prioritized. Change order control is a 

process used to resolve conflicts. These conflicts may be non-monotonic in nature,
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where taking one action negates actions already accomplished. The ADIT cycles may 

be used to create versions of the system where several baselines of the system are 

established with potentially each baseline having more functionality. A baseline of 

the system may be released in the sequence of internal prototype, external prototype, 

alpha, and then beta releases. See the sections on cycles, priority, versions, and 

change control in table 7.1 on page 124.

7.2.3 S ystem  Size E stim ates

The next section of the survey deals with system size estimates in total number 

of person years to build the system and in the calendar time. The person years 

may include all work in analysis, design, implementation, and testing but excludes 

customer usage. See the sections on duration and effort in table 7.1 on page 124.

7.2.4 N on -m o notonic C haracteristics

The last section of the survey deals with the non-monotonic characteristics of the 

software engineering methodology. See table 7.2 on page 124.

7.2.5 T h e Tabular Form

The tables 7.1 and 7.2 starting on page 124 represent the questions in tabular form.
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Question Response
Analysis? none.. poor. .fair., good, .great
Design? none.. poor. .fair. .good, .great
Implementat ion ? none. .poor. .fair. .good, .great
Testing? none..poor..fair..good..great
Cycles of ADIT? one.. few. .several. .frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? number..
Effort? number..

Table 7.1: Survey Part 1: Basic Properties

Question Response
Did a new introduced requirement 
ever negatively affect accomplished 
work?

never..seldom..often..frequent

Did an architectural change ever 
negatively affect accomplished 
work?

never, .seldom. .often.. frequent

Are new features introduced up to 
product release?

never, .seldom. .often.. frequent

Is there a dedicated period of qual
ity assurance before the product is 
released?

no..yes

Table 7.2: Survey Part 2: Change Control
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7.3 P rojects

7.3 .1  T D S H ea lth  Care S ystem

The TDS [92] health care system supported many health care applications including 

order entry, result reporting, medication tracking and scheduling, vital signs, flow 

sheets, active patient care, nursing support systems, day-to-day management of a 

patient while in the hospital, short term medical information, laboratory orders and 

result reporting, pharmacy, and day-to-day charting.

This system was built by Lockheed in the mid 1960s as a spin off of the space 

program. Congress wanted to show that the same technology advancement that 

landed a person on the moon could also have down to earth applications. The first 

customer was a medium sized local hospital: El Camino Hospital.

The original Lockheed team had several hundred members and it took several 

years to build the base system. It took several more years of hospital testing to make 

the system useful and to establish high quality.

The architecture was tool based. In this tool based architecture, the system was 

built around several authoring tools. One tool was used to author formularies and list. 

Another tool was used to author application logic and presentation, while another tool 

was used to author database records. A general purpose database and user interface 

engine was provided. The content was authored by the tools and then interpreted by 

the database. These and the user interface engine defined the application.

The applications were split into two halves. One half of the application defined the 

database while the other half of the application defined the application logic and the 

user interface. In fact, it would be more accurate to  say that the user interface defined 

the application logic. This was a client/server architecture with fat clients. Note that
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the GUI was displayed on dumb monitors and the client ran on the mainframe.

The database, called M l. was influenced by MUMPS. The underlying structure 

of the database resembled artificial intelligence frames. Every record could have a 

variable number of fields with each field having a facet. A facet defines how the field 

of the record is to be obtained. A value facet would contain the data. A function 

facet would contain an algorithm to calculate the data. Other facets included domain 

checks, pre-conditions, post-condition, format information, and triggers. The trigger 

facet was used to notify other associated records that a change in this data  record 

has occurred. Records need not have the same scheme nor be complete. A tool was 

provided to manage the database. Features included the ability to view, update, 

delete, and create the data.

The user interface, called M2, was also frame-based. One frame equals one screen. 

The fields on the screen were controlled by the facets in the frames. These facets 

governed display information, application logic, entry format constraints, default val

ues. and screen navigation. A customer would click through screens and complete a 

database frame. Once the frame was completed, the customer would save the frame. 

The act of saving the frame may trigger other actions. A tool was provided to build 

and manage frames.

The system had several technology innovations for the mid 1960s. These included 

customixed light-pen, light-sensitive monitors, and networking cards. The system 

was hand-crafted in assembly code.

Included with the system was an example hospital. This included several thousand 

screens which represented several dozen health care applications. The system took 

about a thousand person years to build and stabilize for the first hospital. Several 

more thousands of person years were invested to clone the system into about 100
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other hospitals. Since this system was very expensive, millions of dollars per hospital 

per year, only the largest hospital could afford such an investment. Each customer 

required extensive training of several person months.

Once the system was built, many other hospitals could be cloned from the original. 

Hospitals, and health-care in general, are about the same. They differ on details of 

content but not so much on difference of functions. For example, every hospital has 

a pharmacy where prescriptions axe filled but the exact formulary differs greatly.

El Camino Hospital played a critical role as the very first customer. El Camino 

Hospital provided high quality domain knowledge and acted as testers. By having 

the system active in a working hospital gave credibility to the system and raised the 

level of trust.

This system was stable for thirty years. The tool-based architecture allowed for 

new content, new screens, and new application logic. The frame-based system allowed 

for flexibility of information. After initial development, the system was moved from a 

NASA project to a company. Individuals were given the option to follow the project 

or to stay in the company.

The software engineering methodology was cyclical. Small changes were intro

duced, tested in the example hospital, released to the customer, errors were incre

mentally fixed, and new applications were incrementally developed.

The original team did not generate a requirement document nor an architecture 

document. The original key individuals did not follow the system into productization. 

The remaining team focused on content while the underlying tools and infrastructure 

remained stagnate. Technology changes soon made the underlying infrastructure 

obsolete. Attempts to change the infrastructure had the affect of converting the code 

from a stable base to a fragile tangle of spaghetti code. The product disappeared in
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the late 1990s.

The tool-based architecture along with the underlying frame-based data model 

allowed the product to reflect changes in content. The custom hardware, lack of 

requirement and architectural knowledge, hand-crafted assembly code, and loss of 

key individuals contributed to the product obsolescence.

The cyclical software engineering methodology generated a well focused, hospital- 

base, short-term clinical information, nursing system but missed the bigger pictures 

of including doctors, administration, and the electronic patient chart.

See tables 7.3 and 7.4 starting on page 128.

Question Response
Analysis? none, .po o r .. fair. .good, .great
Design? none.. poor.. fair, .good. .great
Implementation? none..poor..fair..good..great
Testing? none. .poor. .fair. .good, .great
Cycles of ADIT? one. .few. .several, .frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? 35 years
Effort? g re a te r  th a n  5,000 person  years

Table 7.3: Survey Part 1: Basic Properties TDS
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Question Response
Did a new introduced requirement 
ever negatively affect accomplished 
work?

never, .seldom, .often, .frequent

Did an architectural change ever 
negatively affect accomplished 
work?

never, .seldom, .often, .frequent

Are new features introduced up to 
product release?

never, .seldom, .often, .frequent

Is there a dedicated period of qual
ity assurance before the product is 
released?

no..yes

Table 7.4: Survey Part 2: Change Control TDS 

7.3.2  D ig ita l’s V irtual M em ory System  (V M S)

VMS ([47], [80], [46]) is an operating system build for the (Virtual Address eXtension) 

VAX instruction set hardware in the late 1970s. The operating system had a strong 

following in the 1980s with a decline of usage in the 1990s. The original team was 

very small, only a dozen or so very experienced individuals. The team quickly grew 

to several hundred, and remained at that level for over a decade. For performance 

reasons, the product was built in highly-structured assembly code. VMS was materi

alized by tens of millions of lines of code and took days to compile. VMS was built to 

be the leading-edge technology operating system targeted at leading-edge technology 

customers. People would say, “Digital was an engineering company, run by engineers, 

for engineers.” One only had to make a technology argument to add a new feature 

to VMS. The Digital engineers built the system for themselves and then shared the 

system, for a fee, with others.

VMS was one of the first major operating systems to support virtual memory, 32
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bit address space, 128 bit floating point number precision, and a complex instruction 

set.

The software engineering methodology was best-first similar to the WaterSluice. 

The requirement committee would prioritize requirements and establish a list of re

quirements to be placed in the next version. For the most part, this list would be 

placed under change control. The axchitecture group, the small core of original de

velopers, would establish the design and high level development plans.

The engineering teams would implement the architecture in a two week cycle. One 

week, called the red week, new development would be added to the  code base. On 

Friday, the code would be frozen and over the weekend the regression suites would test 

the new features and make sure that already established features would not break. 

The next week, the blue week, the engineering teams concentrated on bug fixes. This 

short cycle consisting of build-a-week, followed by test-a-week, would quickly converge 

to the next version of the operating system.

A large regression test suite was maintained. Not only testing for operating system 

features, but the regression testing of all applications, numbering several hundred, 

were also included. One of the best indications of a stable operating system are 

stable applications on top of the operating system.

The engineering team would always be using their current build. Several months 

before customer alpha release, the corporation would be placed on the new release. 

An alpha customer would get a product that has been deployed for several months to 

thousands of machines. The beta release would include bug fixes to the alpha release. 

By the time the new version was released it was already relatively high in quality.

If you include development and internal testing, both regressing testing, and in

ternal operational testing, each year thousands of person yeaxs were involved in VMS
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releases and development.

The version release of the product reflected the weekly two phase cycle. Versions 

ending in even numbers. 1.0. 1.2, 1.4. etc.. had new features while versions ending in 

odd numbers. 1.1, 1.3. 1.5, etc.. had bug fixes. The odd versions actually included 

the new code for the next even version, but this code was disabled or running in 

shadow mode only. Just the presence of new code, even disabled, would introduced 

bugs associated with memory management, locking, and race conditions.

There were several decisions which eventually lead to the decrease in popularity 

of VMS. First, the VAX instruction set was a member of the complex instruction 

set families. In the late 1970s, instruction sets were getting more and more func

tionality. This made the compilers easy to write. A compiler was not much more 

then a pattern matcher with rewrite rules. As compilers got smarter, this allowed for 

instruction sets to become simpler, and a new family, the RISC, of simple instruction 

sets was introduced. This was welcome news to the hardware makers because it let 

the hardware developers concentrate on speed and performance and let the compiler 

handle complexity of translating algorithms and data structures into sequences of 

simple instructions.

Second, VMS was written in VAX assembly language. This made translating the 

millions of line of code a daunting task.

Third, architecture design of VMS had a major flaw. An operating system needs 

to lock critical sections. In fact, the correctness of just about every line of code is 

highly influenced by correct locking. VMS used a highly non-standard feature of 

interrupt priority levels to get the affect of locking. There were only 32 such levels, 

leading to only 32 major locks. The physical lock table was only 32 by 32 while the 

effective lock table was more like thousands by thousands. Every lock was highly
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overloaded in meaning. This did not scale and made VMS more complex. After 

a decade of development, VMS was moved to the alpha chip set. but only after the 

alpha chip set was modified to support interrupt priority levels. Had the original team 

separated out the locking mechanism to a more general architecture, this dependency 

could have been avoided.

Fourth, only a few people understood the total picture of the locking scheme. 

The effective lock table for VMS was in their heads. This knowledge was never 

really captured in writing and really reflected years of experience of working with the 

architecture of VMS.

See tables 7.5 and 7.6 starting on page 132.

Question Response
Analysis? none..poor..fair..good..great
Design? none..poor..fair..good..great
Implementation? none.. poor, .fair. .goo d . .great
Testing? none.. poor. .fair. .good, .great
Cycles of ADIT? one..few..several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no. .yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? 20 y ears
Effort? g re a te r  th a n  10,000 person y e a rs

Table 7.5: Survey Part 1: Basic Properties VMS
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Question Response
Did a new introduced requirement 
ever negatively affect accomplished 
work?

never, .seldom , .often, .frequent

Did an architectural change ever 
negatively affect accomplished 
work?

never..seldom..often..frequent

Are new features introduced up to 
product release?

never..seldom..often..frequent

Is there a dedicated period of qual
ity assurance before the product is 
released?

no..yes

Table 7.6: Survey Paxt 2: Change Control VMS 

7.3 .3  Stanford U niversity  Infrastructure

The business functions of Stanford University are currently managed by a relatively 

large group of developers and maintainers. The group numbers about 200. In the 

early 1970s, this group began building an environment based on SPIRES ( [94]. [93]. 

[104] ) a hierarchical text database system originally used to store scientific (high 

energy physics) documents. On top of SPIRES was built an infrastructure to support 

email, event messaging, work flow, forms routing, and digital signature. Using this 

infrastructure, the two major applications, one centered around accounting and the 

other centered around students information, were written.

The development of this system took about two and a half decades. This is an 

example of a thousands of person year project.

The software engineering methodology followed was cyclical in nature. The builder’s 

of the system and the customer’s of the system were almost one in the same. Small 

incremental changes were made to meet small requirement changes. Testing was done
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by the staff at the help desk. If it worked on the examples in the help manual, it was 

declared to be ready for deployment. Deployment was easy because it was only on 

one machine. Customers would connect through terminals. Everything was custom 

built to handle small-detailed changes.

There is no one requirement document. There is no one architecture document. 

There is no one person who understands the complete system. This is a recipe 

for pending disaster. Individual members in the development team knew only local 

information.

The system served the university well until the wake-up call in the mid 1990s. The 

federal government made charges against the university of m ajor errors in billing. To 

show otherwise would require a special query across the general ledger. This class of 

queries was never before attem pted and had to be written, in assembly code, from 

scratch. It took over a year and about 10 person years worth of work to finish this 

query that showed the university to be in compliance.

See tables 7.7 and 7.8 starting on page 135.
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Question Response
Analysis? none.. poor..fair.. good, .great
Design? none..poor..fair..good..great
Implementation? none. .poor. .fair, .g o o d . .great
Testing? none, .poor. .fair. .good, .great
Cycles of ADIT? one. .few. .several, .freq u en t
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? 25 y e a rs
Effort? g re a te r  them  1,000 p e rso n  years

Table 7.7: Survey Part 1: Basic Properties Stanford

Question Response
Did a new introduced requirement 
ever negatively affect accomplished 
work?

never, .seldom, .o f te n .. frequent

Did an architectural change ever 
negatively affect accomplished 
work?

never..seldom..often., frequent

Are new features introduced up to 
product release?

never, .seldom, .often, .frequen t

Is there a dedicated period of qual
ity assurance before the product is 
released?

no..yes

Table 7.8: Survey Part 2: Change Control Stanford
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7.3 .4  Independent Technology Inc. (ITI)

ITI built client-server applications using key components of networking, transaction 

processing, graphical user interfaces, relational databases. UNIX, and object-based 

programming. Their architecture paradigm was to build a common interface to the 

key components. This common interface could then be layered on a particular ven

dor's solution. In this way. an application built on this common interface could easily 

be migrated from similar but disparate vendor provided solutions. Hence the name 

of the company: independence.

The biggest product built was a health insurance claims processing system. In

ternal claims processing clients would process claims. The claims would be routed 

through the system using a work flow graph. A claim would be represented as re

lational data and images of the original form. The system was deployed to about 

a thousand clients talking to a multi-processor server. This system took -50 person 

years to build the tool kit and 15 person years to build the application.

The software engineering methodology used was cyclical. Small incremental changes 

to the application were done, shown to the customer, and iterated upon. There was 

no requirement document except for a very general one-page statement. The archi

tecture was well defined by the tools.

What was missing was a total lack of quality assurance. Less than 0.5 person years 

was spent on testing before the product went live at the custom ers site. Needless 

to say, the system was not reliable and not well accepted. Now the company had 

to concentrate on doing nothing but bug fixes. With no formal regression testing 

suite, each bug fixed would most likely create, or uncover, another bug. After several 

months, the system was rejected by the customer and the company soon went out of 

business.
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The individual responsible for quality assurance would generate reports with the 

same conclusion: performed as expected. To a casual reader this meant high quality 

with no real problems. However, the quality assurance person meant something 

entirely different. He expected low quality and found low quality. Hence the report: 

performed as expected.

The tool kit was sold. Having gone through the first application, the tool kit was 

some what real. The tool kit was also later abandoned. The architectural goal of 

independence was not accomplished. The applications were independent of vendor 

specific systems, but now the application was dependent on the tool kit. In fact, the 

tool kit was just another vendor. A better approach to independence would have 

been to use accepted standards as the foundation of the tool kit.

See tables 7.9 and 7.10 starting on page 137.

Question Response
Analysis? none..poor..fair..good..great
Design? none.. poor.. fair. .good, .great
Implementation? none..poor..fair..good..great
Testing? none..poor..fair..good..great
Cycles of ADIT? one.. few. .several. .frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? th re e  years
Effort? a b o u t 50 p e rso n  years

Table 7.9: Survey Part 1: Basic Properties ITI
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Question Response
Did a new introduced requirement 
ever negatively affect accomplished 
work?

never, .seldom, .often. .freq u en t

Did an architectural change ever 
negatively affect accomplished 
work?

never, .seldom, .often, .freq u en t

Are new features introduced up to 
product release?

never, .seldom, .often, .freq u en t

Is there a dedicated period of qual
ity assurance before the product is 
released?

no..yes

Table 7.10: Survey Part 2: Change Control ITI 

7 .3 .5  O ceania

Oceania is a health care company founded by physicians. The physicians worked 

in the emergency traum a center on weekends pulling a 48 hour shift. The income 

derived from this endeavor was more than enough to support themselves and to fund 

Oceania.

Oceania hired about a dozen college experienced but non-graduate junicr-implementors. 

This team, over a five year period, generated an impressive demo of a  physician-centric 

health care system based on the NeXT machine. The demo was impressive enough 

to obtain venture capital investment and three signed customers. An additional year 

passed with no shipped product; an experienced software engineer was needed.

There was no requirement document, no architecture document, and no testing 

paradigm. In fact, the system only contained the GUI. There was no database and 

no application logic. No wonder there was no product.

This situation is actually understandable. For the most part, customers are very
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GUI centric. W hat the customer sees on the screen, is the customers total view of 

the rest of the application. The underlying infrastructure is assumed to exists if the 

GUI is present. A junior engineering team, lead by GUI-centric physicians, would 

build the best GUI in the world and not even realize the massive amount of missing 

code.

The software engineering process in place was cyclical in nature, only iterating on 

the GUI. This generated a wonderful GUI tha t could not be supported.

A more formal software engineering process was put in place. A requirement 

document and architecture were established for the GUI, the application logic, and the 

database components. A testing plan was put in place. The scope of the application 

was grossly reduced. The signed customers were replaced with a hospice. In this way, 

any error in the system would not have any affect on the outcome of any patient, 

since all patients in the hospice are terminally ill. The product was shipped and went 

live and was active for over a year without any customer discovered bugs.

The engineering process was turned back into the control of the physicians. Un

fortunately, the physicians quickly reverted to  their established previous behavior and 

the company had difficulties in delivering another successful deployed product.

There is a fundamental difference between the training of a physician and the 

training of an engineer. In the practice of health care, a physician must always 

base his decisions on the most current known information and protocols. As new 

information is discovered about the patient and as new procedures are established, 

the corrective actions that a physician takes are different than the corrective actions 

based on the outdated information. A physician acts in a non-monotonic fashion. 

Current information is much more important than past historical information.

An engineer, on the other hand, acts in a monotonic fashion. Actions are based on
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facts. Work accomplished so far should not be thrown out without significant reasons. 

A physician wants to base all actions on the most current information. Engineers need 

to base actions on all information, both current and past.

The conflict between the two paradigms was the root cause of m ajor problems for 

Oceania. In particular, when one relational database vendor came out with a new 

product, the physicians wanted to immediately change over and throw out the work 

done on the other relational databases vendor product. The engineers agreed that 

the new release was better than the old release, but why throw out all of that work 

just for a little gain.

An important missing process concept in software engineering methodology was 

apparent. Non-monotonic changes to a system needs to be carefully managed. Some 

of the changes are necessary and should be allowed. Many of the changes are not 

important enough to delay the shipping of the product. Even if the product does not 

have the best current answer to all problems, a good answer is usually good enough. 

See tables 7.11 and 7.12 starting on page 141.
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Question Response
Analysis? none., poor., fair.. good..great
Design? none., poor.. fair..good.. great
Implementation? none.. poor..fair..good.. great
Testing? none., poor., fair..good..great
Cycles of ADIT? one..few..several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no. .yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? over 10 years
Effort? 100 person  y ears

Table 7.11: Survey Part 1: Basic Properties Oceania

Question Response
Did a new introduced requirement 
ever negatively affect accomplished 
work?

never. .seldom, .often.. frequent

Did an architectural change ever 
negatively affect accomplished 
work?

never. .seldom, .often, .frequent

Are new features introduced up to 
product release?

never. .seldom, .often, .frequent

Is there a dedicated period of qual
ity assurance before the product is 
released?

no..yes

Table 7.12: Survey Part 2: Change Control Oceania
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7.3 .6  C O N M O D

CONMOD stands for CONflict MODeling and was a government program to simulate 

the battlefield. One battle could be simulated with different weapons, strategies, 

soldiers, weather, and battle fields without the needless destruction of resources and 

at a fraction of the cost.

The project was a follow on project to JANUS. JANUS had been around for 

several decades and resisted many efforts to modernize.

CONMOD would be based on the technology of objects, Ada, relational databases, 

large monitors with color GUIs, Digital’s VAX computers running VMS, and expert 

systems.

There was no real software engineering methodology followed. There was no 

requirement or architecture document. There was no testing paradigm. The military 

would place about a dozen high level professional officers on a 12 month rotation. 

The civilian programmers would get their daily work assignments from the officers.

A significant amount of tim e was spent on the random number generator. Since 

this was a discreet simulation where every action would create an event with a prob

abilistic outcome, the random number generator was considered high priority. Every 

actor on the battle field, be it personnel or munitions, would have an event queue. As 

time progressed, actions would trigger events. Everything was to be modeled except 

for the command and control. Command and control would be provided by military 

officers guiding the simulation.

CONMOD was to be a non-classified project using only militaxy information gath

ered from public sources. The military officers would have a private session on what 

information to share with the civilians.

The project never accomplished more than a very simple simulation. There was
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a large gap on communication between the civilian programmers who wanted to talk 

algorithms and data structures and the military officers who wanted to talk about 

military campaigns. The project lasted five years with about 100 person years of 

effort invested. See tables 7.13 and 7.14 starting on page i43.

Question Response
Analysis? none.. p oor.. fair. .good. .great
Design? none..poor..fair..good..great
Implementation? none.. poor..fair..good.. great
Testing? none., poor., fair. .good..great
Cycles of ADIT? one. .few. .several.. frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? 5 years
Effort? 100 person  years

Table 7.13: Survey Part 1: Basic Properties CONMOD
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Question Response
Did a new introduced requirement 
ever negatively affect accomplished 
work?

never..seldom., often, .freq u en t

Did an architectural change ever 
negatively affect accomplished 
work?

never..seldom..often..frequent

Are new features introduced up to 
product release?

never, .seldom, .often, .freq u en t

Is there a dedicated period of qual
ity assurance before the product is 
released?

no..yes

Table 7.14: Survey Part 2: Change Control CONMOD

7.3.7  U N IX

UNIX ( [124], [123]) is an operating system originating at AT&T Bell Labs in the 

1970s. UNIX was one of the first operating systems written in the high level language. 

C, and intended to be machine hardware independent. Many versions of UNIX exist 

and the influence of UNIX on other operating systems is dramatic.

Versions of UNIX included virtual memory, multi-processing, symmetric multi

processor, a file system, networking, the X windowing systems, and a script-based 

user interface shells. Many versions of UNIX axe free or near free and the source code 

is readily available.

UNIX is very popular in university and research environments because of the 

low cost, advanced features, and readily available source code. A large customer 

community has contributed massive number of applications, free for the asking. The 

UNIX distribution includes thousands of user applications.

The key architectural feature that has allowed UNIX to last for such a long time is
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the communication subsystem design. Everything in the communication subsystem 

has an index entry called the inode. Given an inode entry, an application can read 

and write bytes of data. The inode entry may be associated with a  network, file 

system, a process, or a keyboard. Inodes give UNIX applications hardware I/O  

device independence and allows for dynamic redirection of I/O . A new I/O  device is 

easy to install. Just create an inode, write a device driver, and almost like magic, a 

new I/O device is now on the system.

See tables 7.15 and 7.16 starting on page 145.

Question Response
Analysis? none..poor..fair..good..great
Design? none.. poor. .fair. .good., g re a t
Implementation? none.. poor. .fair. .good, .g rea t
Testing? none..poor..fair..good..great
Cycles of ADIT? one..few..several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? 30 years
Effort? g re a te r  th a n  10,000 p e rso n  years

Table 7.15: Survey Part 1: Basic Properties UNIX
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Question Response
Did a new introduced requirement 
ever negatively affect accomplished 
work?

never..seldom..often..frequent

Did an architectural change ever 
negatively affect accomplished 
work?

never..seldom..often..frequent

Are new features introduced up to 
product release?

never..seldom..often..frequent

Is there a dedicated period of qual
ity assurance before the product is 
released?

no..yes

Table 7.16: Survey Part 2: Change Control UNIX

7.3.8 X

X ( [109], [132], [118] ) is a windowing system built for UNIX but is intended to be 

machine and operating system independent. X is built on the client/server model. 

The server side of X resides on the desktop computer and controls the monitor, 

keyboard, and mouse. The client side of X may reside anywhere on the network. 

These X clients are called X-applications. A protocol, the X protocol, is used to 

communicate between X client and X servers.

X is a windowing system and not a user interface paradigm. Motif is the most 

common accepted user interface paradigm specifying sliders, buttons, basic design of 

windows, and other widgets.

X was created in the 1980s at MIT. The team was very small lead by Jim  Gettys. 

X is well documented and the source code is free and readily available.

There were two decisions which hampered the wide acceptance of X. The first 

decision was not to dictate a common look-and-feel. This lead to many different
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windowing paradigms. Many times competition leads to better answers, but in this 

case, competition lead to conflicts and interoperability between systems. Eventually, 

the standards committee for X picked Motif.

The second decision was to break the inode paradigm of UNIX. This meant that 

X could not be scripted. One application could no longer run another application 

in a piped manor. Attempts to fix this problem are underway in the TCL scripting 

language.

See tables 7.17 and 7.18 starting on page 147.

Question Response
Analysis? none..poor..fair..good..great
Design? none.. poor.. fai r.. go o d . .great
Implementation? none.. poor.. fai r.. go o d . .great
Testing? none.. poor. .fair.. go o d . .great
Cycles of ADIT? one..few..several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? 15 years
Effort? 100 person  years

Table 7.17: Survey Part 1: Basic Properties X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER  7. PROJECT SURVEYS 148

Question Response
Did a new introduced requirement 
ever negatively affect accomplished 
work?

never. ,seldom..often. .frequent

Did an architectural change ever 
negatively affect accomplished 
work?

never..seldom..often..frequent

Are new features introduced up to 
product release?

never..seldom..often..frequent

Is there a dedicated period of qual
ity assurance before the product is 
released?

no..yes

Table 7.18: Survey Part 2: Change Control X

7.3.9  A d a

Ada ( [71]. [5] ) was created in the late 1970s to solve the problem of the software 

programming bottle neck. Millions of lines of code needed to be written to support 

government and commercial needs. Hardware has gotten faster and cheaper each year, 

but software programming remained labor intensive and expensive. Furthermore, 

many systems built in the 1950s through the 1970s were nearing their life cycle end 

and had to be replaced. Because computer science is a relatively new field, solutions to 

total life cycle management were not abundant. To make maters worse, the computer 

science environment consists of a huge collection of heterogeneous hardware, software, 

programming languages, operating system environments, file systems, and database 

systems.

The hope of Ada was to create one independent environment, written in one 

language, to support all applications.
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Ada is a strongly typed language supporting object-oriented programming, in

formation hiding, modularization, concurrent programming, generalization through 

generic classes, and a unified error and exception handling system. The hope was that 

Ada was powerful enough to express a vast number of algorithms and data structures 

as well as process control and parallelism. In 1983, Ada became a standard.

The development of Ada went though an extensive period of requirement gath

ering, prototyping, and review. This was followed by huge amounts of funding for 

compilers and supporting environments. All government contracts were to use Ada 

as the language of choice.

Unfortunately, Ada did not eclipse the world. The developers of Ada created a 

system that was difficult to master, hard to program, and un-forgiving to change. 

Creating a language does not solve the bigger problems of software engineering 

methodologies where analysis, requirements, design, and architectures are defined. 

The strongly-typed pointer concept in Ada made many categories of programming 

difficult, including algorithms in the fields of AI, databases, operating systems, and 

file systems.

See tables 7.19 and 7.20 starting on page 150.
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Question Response
Analysis? none..poor..fair..good..great
Design? none..poor..fair..good..great
Implementation? none.. poor.. fair. .go o d . .great
Testing? none..poor..fair..good..great
Cycles of ADIT? one.. few. .several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? 20 y ears
Effort? g re a te r  th a n  10,000

Table 7.19: Survey Part 1: Basic Properties Ada

Question Response
Did a new introduced requirement 
ever negatively affect accomplished 
work?

never, .seldom , .often, .frequent

Did an architectural change ever 
negatively affect accomplished 
work?

never.. seldom..often.. frequent

Are new features introduced up to 
product release?

never..seldom.. often, .frequent

Is there a dedicated period of qual
ity assurance before the product is 
released?

no..yes

Table 7.20: Survey Part 2: Change Control Ada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 7. PROJECT SURVEYS  1

7.4 Software E ngineering M ethodologies

7.4.1 A Sequential Softw are E ngineering M eth od o logy

See tables 7.21 and 7.22 starting on page 151.

Question Response
Analysis? none., poor.. fair..good.. g rea t
Design? none.. poor. .fair. .good, .g rea t
Implementation? none..poor..fair..good..great
Testing? none.. poor..fair.. good, .g rea t
Cycles of ADIT? one..few. .several, .frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..ves
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? sh o r t
Effort? l i t t le

Table 7.21: Survey: A Sequential Software Engineering Methodology: Part 1
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Question Response
Did a new introduced requirement 
ever negatively affect accomplished 
work?

never, .seldom. .oft en.. frequent

Did an architectural change ever 
negatively affect accomplished 
work?

never..seldom..often..frequent

Are new features introduced up to 
product release?

never, .seldom, .often, .frequent

Is there a dedicated period of qual
ity assurance before the product is 
released?

no..yes

Table 7.22: Survey: A Sequential Software Engineering Methodology: Part 2

7.4 .2  T h e B oehm -W aterfall Software E ngineering M eth odol

ogy

See tables 7.1 and 7.24 starting on page 153.
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Question Response
Analysis? none..poor..fair..good..great
Design? none..poor..fair..good..great
Implementation? none..poor..fair-good..great
Testing? none..poor..fair..good..great
Cycles of ADIT? one..few..several..frequent
Priority? no-yes
Versions? no..yes
Change Order Control? no-yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no ..yes
Beta Release? no..yes
Duration? s h o r t
Effort? l i t t le

Table 7.23: Survey: Boehm-Waterfall : Part L

Question Response
Did a new introduced requirement 
ever negatively affect accomplished 
work?

n e v e r . .seldom. .often, .frequent

Did an architectural change ever 
negatively affect accomplished 
work?

nev er, .seldom. .often.. frequent

Are new features introduced up to 
product release?

n e v e r .. seldom. .often.. frequent

Is there a dedicated period of qual
ity assurance before the product is 
released?

no..yes

Table 7.24: Survey: Boehm-Waterfall: Part 2
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7.4.3 A  C yclical Softw are E ngineering M eth od o logy

See tables 7.25 and 7.26 starting on page 154.

Question Response
Analysis? none.. poor.. fai r. .good.. g rea t
Design? none., poor., fair. .good..great
Implementation? none. .poor, .fair. .good, .g rea t
Testing? none..poor..fair..good..great
Cycles of ADIT? one.. few. .several. .frequent
Priority? yes..no
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? m edium
Effort? m edium

Table 7.25: Survey: Cyclical : Part 1
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Question Response
Did a new introduced requirement 
ever negatively affect accomplished 
work?

never, .seldom, .often, .frequent

Did an architectural change ever 
negatively affect accomplished 
work?

never, .seldom, .often, .frequent

Are new features introduced up to 
product release?

never. .seldom, .often . .frequent

Is there a dedicated period of qual
ity assurance before the product is 
released?

no..yes

Table 7.26: Survey: Cyclical : Part 2

7.4.4 T he B oehm -Spiral Software E ngineering M eth od ology

See tables 7.27 and 7.28 starting on page 156.
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Question Response
Analysis? none., poor.. fair..good.. g re a t
Design? none..poor..fair..good..great
Implementation? none..poor..fair..good..great
Testing? none., poor., fair..good..great
Cycles of ADIT? one. .few..several, .frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? m ed ium
Effort? m ed ium

Table 7.27: Survey: Boehm-Spiral: Part 1

Question Response
Did a new introduced requirement 
ever negatively affect accomplished 
work?

never..seldom..often..frequent

Did an architectural change ever 
negatively affect accomplished 
work?

never..seldom..often..frequent

Are new features introduced up to 
product release?

never, .seldom, .often , .frequent

Is there a dedicated period of qual
ity assurance before the product is 
released?

no..yes

Table 7.28: Survey: Boehm-Spiral: Part 2
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7.4 .5  T h e W aterS lu ice Softw are E ngineering M ethodology

See tables 7.29 and 7.30 starting on page 157.

Question Response
Analysis? none.. poor.. fai r . .good.. g re a t
Design? none.. poor.. fair. .good.. g re a t
Implementation? none..poor..fair..good..great
Testing? none., poor.. fair..good.. g re a t
Cycles of ADIT? one.. few..several.. frequen t
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? m an y
Effort? h igh

Table 7.29: Survey: WaterSluice: Part 1
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Question Response
Did a new introduced requirement 
ever negatively affect accomplished 
work?

never, .seldom. .oft en.. frequent

Did an architectural change ever 
negatively affect accomplished 
work?

n ev er. .seldom. .oft en.. frequent

Are new features introduced up to 
product release?

never, .seldom. .often.. frequent

Is there a dedicated period of qual
ity assurance before the product is 
released?

no..yes

Table 7.30: Survey: WaterSluice: Part 2

7.5 Sum m ary

Here are some observations and thoughts from the surveys.

• Having a strong requirement process is a necessary condition for success but 

not a sufficient condition.

• A strong architecture that supports change is necessary for longevity.

• Implementation details, as long as the code is of high quality, are not a governing 

factor to long term life and success of a system.

•  An overlooked requirement or architectural feature could lead to the downfall 

of a system.

• Having the right people is very important, but having critical features dependent 

on the performance of a few key individuals may lead to the downfall of the 

system.
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Conclusion, Future, and R elated  

Work

The investigations that follow deal with software engineering elements that support 

change. These include methodologies (WaterSluice), paradigms (Noema). architec

ture (DADL), component composition (CHAIMS), and environments (DCE).

8.1 M ethodologies

This thesis introduced the WaterSluice methodology. There are several potential 

follow on projects.

•  Provide a tool suite to automate the WaterSluice methodology.

• Build tools in the WaterSluice methodology using a process definition language.

• Simulate the WaterSluice methodology.

• Tie the methodology to component engineering.

159
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8.2 Paradigm s

8.2.1 A b stract

A traditional engineering paradigm is very hierarchical in nature. To understand a 

whole, first understand the parts then combine the knowledge into an understanding 

of the whole.

In a noemic paradigm, the understanding of the whole comes first. The under

standing of the part is a projection of the whole. The noemic paradigm reflects life.

This section [31] proposes that modern software engineering built for highly dis

tributed computing environments should be based on a noemic paradigm.

Life is an example of a Noema. A Noema is not a neural network which simulates 

the learning process of the brain. A Noema is not a genetic algorithm which simulates 

system evolution. A noemic paradigm is represented by the body chemistry of living 

systems like the respiratory, circulatory, immune, and digestive systems.

This section will define the foundations of the noemic paradigm, give some ex

amples, and support the conjecture that a Noema. though harder to build, supports 

change.

In a Noema, the whole is greater than the sum of the parts.

8.2.2 T h e  N oem ic Paradigm

Background

Traditional western science and technology is strongly influenced by rationalism and 

logical empiricism that can be traced back to Plato. A good summary of this paradigm 

can be found in [131]. When faced with the problem of trying to understand a system, 

the rationalistic tradition indicates that three basic steps are taken:
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•  Characterize the whole system in terms of identifiable sub-components with well 

defined properties.

• Understand each sub-component by finding general rules that describe their 

behavior.

•  Combine the sub-components into the whole system, applying the rules of the 

sub-components, to draw conclusions about the behavior of the whole and to 

establish the understanding of the whole.

The rationalist approach requires complete knowledge of sub-components and 

their actions and interactions. Decomposition of complex systems into simpler parts 

is a natural scientific paradigm in the rationalist approach.

The rationalist approach is in contrast to hermeneutics [65]. Here the components 

of a whole system are defined as an interpretation in the context of the whole and the 

environment. There is no full and explicit understanding of neither the components 

nor the whole system. The understanding is never complete.

The whole system defines to exists a hermeneutic circle where there are no absolute 

facts but only interpretations of content within a context.

For example, try looking up a word in the dictionary. A word is defined in terms of 

other words which eventually have definitions which circle back to the original word. 

From Webster, the verb “to move” is defined as “to go from one place to another with 

a continuous motion” while the verb “to go” is defined as “to move on a course.” Each 

word is defined in a circular fashion having each other’s word used in each other’s 

definition. The two words together form a noemic concept associated with motion. 

Of course, there are many meanings of these two words, each dependent on a context . 

These two words participate in many noemic concepts.
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Hermeneutic circles are like fast spinning toy tops. An external observer, one 

outside the toy top, is given the tasks of riding, or understanding, the toy top. His 

first attempt is to step onto the toy top and is immediately thrown off. To be 

successful, first the observer must gain momentum, and match the motion of the toy 

top, and then, step onto the toy top. One can’t understand the hermeneutic circle 

without first understanding the whole.

Edmund Husserl called the Hermeneutic circle paradigm a Noema [49]. Noema is 

an antiquated Greek word for an intellect.

A Noema has the following characteristics:

• The implicit beliefs within a Noema and assumptions cannot ail be made ex

plicit.

• Practical operational understanding of a Noema is more fundamental than de

tached theoretical understanding.

• A representation of a thing cannot be complete.

• Understanding is fundamentally in the context of the whole and cannot be 

reduced to activities of individual sub- components.

• A sub-component cannot avoid its interactions with the whole.

• The effects of the sub-components cannot be absolutely predicted.

• All representations of the current state are ephemeral at best.

• Every representation of a sub-component is an interpretation with respect to 

the whole.
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•  Every action of the sub-component affects the whole, even non action. The 

presence of the sub-component affects the whole.

The traditional hard sciences have carved a very small domain out of the universal 

Noema. The actions of one component affects the whole and cannot be taken in 

isolation.

Traditional Engineering

Traditional engineering is decompositional in nature. To understand the whole, first 

decompose the whole into the constituent parts. Then master the individual con

stituent parts, put them back together again, and the whole is now understood. The 

understanding of the whole is the sum of the understanding of the parts.

A good example of traditional engineering is a car. Break the car down into 

its parts, such as the steering sub-system, the transmission, the engine, the brakes, 

and many more sub-systems. The mastery of each of these sub-systems leads to the 

mastery of the car. The whole or, in this case, the car, is completely mastered by 

examining the parts in isolation and then looking at their combination to form the 

whole.

N oem a

A Noema is different from traditional engineering. Any one part cannot be understood 

without the context of the whole. Changes in one aspect affect the whole. The role 

of a part is a projection into the whole. In traditional engineering, first understand 

the parts, then understand the whole. In a Noema, first understand the whole, then 

understand the role of each part.
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A good example of a Noema is the human body. It contains the sub-systems of 

circulatory, digestion, nervous, and many others. But the role of each part is highly 

interdependent on the other parts. One often hears a physician say. “I need to get the 

total picture first before I can treat this patient.” A change in one subsystem cannot 

be isolated from the other subsystems. Each individual cell acts independently, yet 

the whole is much greater than the sum of the parts.

Distributed computer environments are a Noema. This environment contains 

many highly interdependent components. Together they form a system.

Computer hardware is not a Noema. Hardware is based on hierarchical layering 

techniques appropriate for traditional engineering. A database is not a Noema. again 

for similar reasons. A life form is a good example of a Noema built over millions of 

years with natural selection and evolution. An information based economy is another 

example of a Noema.

My contention is that a Noema is the correct paradigm for the software engineering 

of large distributed systems.

8.3 D istrib u ted  A rchitectures

8.3 .1  A b stract

Many computer science languages have been developed over the years tha t have con

centrated on language fundamentals for the definition of algorithms and data struc

tures. These traditional computer science languages give little help in defining the 

architecture of a system, especially a large distributed system. Architecture defines 

the components of a system and their interfaces, methods of communication, and 

behaviors. A Distributed Architecture Definition Language (DADL) [28] is proposed
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that extends the existing paradigm used in programming to include architecture de

scriptions for a particular class of distributed system architectures.

The architectural description language will provide fundamentals that concentrate 

on the conversation, communication, contracts, and behaviors of elements in the 

distributed system.

A DADL will be defined and used to describe a family of different distributive 

architectures. A program written in DADL can be compiled into different materi

alizations of the axchitecture. Each materialization has different performance and 

resource characteristics leading to an optimizing choice.

It will be shown that large architectural variations can be described with minimal 

changes, thus showing the elaboration tolerance of DADL programs.

8.3.2 In troduction

Distributed Architecture Definition Languages (DADLs) are emerging as tools for for

mally representing the architecture of distributed systems. As architectures become a 

dominant theme in large distributed system development, methods for unambiguously 

specifying a distributed architecture will become indispensable.

An architecture represents the components of a large distributed software system 

and their interfaces, methods of communication, and behaviors. It is the behaviors 

of the components, the communication between the pieces and parts, that are under- 

specified in current approaches. To date, distributed system architectures have largely 

been represented by informal graphics in which the components, their properties, their 

interaction semantics and connections, and behaviors are hand-waved in only partially 

successful attempts to specify the architecture.

Traditional computer languages, like C, concentrate mainly on the definition of
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the algorithm and data structure components by using language provided mecha

nisms to specify type definitions, functions, and algorithm control. The interface is 

under-defined by header files where function names, parameters, parameter types, 

and parameter order are specified. This is short of specifying the behavior of the 

interface. Traditional computer languages are much more suited to defining imple

mentation than they are to defining architecture.

Consider the following simple C program where we calculate the sum of two inte

gers. See Table 8.1 on page 166.

The implementation file:

#include <plus.h>
void main() {

int results ; 
results =  plus(1.2) :

} -•

int plus ( int n , int m) { 
return n+m  ;

} ;

The header file:

int plus ( int n , int m) ;

Table 8.1: Example of a Traditional C Program with Header File.

Traditional programming languages easily define the data structures and the al

gorithms. There is very limited help in defining the architecture. In fact, there is an 

assumed architecture, so implicit that most languages don’t even define it as a fea

ture. The functions main and plus communicate over a shared address space, memory
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resident, ordered, highly reliable, synchronous, and error-free communication medium 

materialized by using a call-frame stack.

The language of communication is defined by the call statement. The function 

main sends two integers to  the function plus and waits for an integer in reply. The 

function plus receives two integers and replies with their sum. The implicit call and 

return in the C language materialize this architecture.

This implicit architecture is appropriate for small and simple programs but as 

applications become more complex, large, and distributed, the implicit call-frame 

stack architecture is no longer appropriate. A distributed architecture might deal with 

a disjoint address space, non-memory resident, unordered, non-reliable, asynchronous, 

and error-prone communication mechanism. This is far from the assumptions of 

traditional computer languages. It is no wonder that large systems are hard to define 

using traditional programming languages.

Object based systems, like C + + , extend the programming paradigm to include ob

jects, sub-types, polymorphism, and inheritance. This powerfully extends the ability 

of a language to define the data structures and algorithms. However, the  underly

ing implicit architecture does not change. The architecture still dictates memory 

resident, ordered, highly reliable, synchronous, and error free communication over a 

shared address space, that is materialized by a call-frame stack.

Another shortfall of the implicit object-based system architecture is in the defini

tion of the behavior. Though the C + +  interface defines the methods exported by a 

class, it does not define the methods used or required by tha t class. Thus an imple

mentation can perfectly m atch the interface but have an entirely different behavior 

than another similar implementation because it is composed with different primitives.

Some of the founding object-based languages, such as SIMULA [77] and SmallTalk
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[57], [85], [56], and [58], tried to replace the implicit architecture of a call-frame stack 

with a message-passing queue. In this architecture, methods are evoked by passing 

messages between objects. However, the architecture is still implicit and under

defined, leaving no choice in alternative behaviors.

Distributed middleware support systems, like DCE [54], extend the programming 

paradigm. The DCE Interface Definition Language (IDL) includes argument flow 

(in or out parameters), interface identifiers, dynamic binding information, and ex

ceptions. Using DCE, it is possible to define communication mechanisms for archi

tectures that are in disjoint address spaces, non-memory resident, non-reliable, and 

error prone. DCE accomplishes this by expanding the call mechanism. Asynchronous 

communication is dealt with by providing threads while unordered communication is 

provided by using network data grams under UDP. DCE replaces the traditional ar

chitecture with one that is more suited for distributed computing, but it does not 

allow a choice between alternative architectures.

C'ORBA [60] extends the programming paradigm to include messaging and dis

tributed objects. Communication is done over an information bus where requests 

are issued and brokers respond to satisfy those requests. CORBA is really directed 

at building object models for a large class of applications under one, and only one, 

request/broker architecture. Though this is extremely necessary for application de

velopment, architectural needs go unfulfilled. CORBA is more like a detailed require

ment specification, defining in detail the needs of a particular application domain.

Megaprogramming [130] extends the call mechanism to an asynchronous messag

ing paradigm between large components called megamodules. The communication 

between two megamodules is defined with language structures like setup, estim ate, 

invoke, extract, and examine.
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Languages, like Rapide [89], extend the interface definitions to include events and 

causal relationships between events. Using the paradigm of hardware design, the 

behavior of the interface is governed by signals and events which are synchronized by 

a  clock. The interface has been extended to include both the generated and required 

methods. This allows for the interface to act more like a meta-schema that governs 

both actions and simple behavior.

In comparison, Rapide expands the role of the call statement into a directed 

graph of causal events. Megaprogramming expands the call statement into a family 

of asynchronous primitives. While the proposed DADL expands the call statement 

into conversations, behaviors, and contracts concentrating on distributed systems.

Don’t confuse a DADL with a requirement language. The requirement is a state

ment of the problem at a high level of abstraction. This is in contrast to a DADL. 

which defines a generic plan that binds the requirements to the implementation. 

Requirement languages, such as STATEMATE [63] and Modechart [74], define the 

problem but not the solution.

This section proposes a DADL to specify architectures of distributed systems. 

This is accomplished by first defining the attributes of large distributed systems that 

distinguish a distributed system of other types of systems. Next, the DADL language 

will be defined. DADL will then be used to specify several key architectures.

Other related work includes Rapide [89], UniCon [120], ArTek [64], Wright [4], 

Code [97], Demeter [103], Modechart [74], PSDL/CAPS [90], Resolve [52] and Meta- 

H [126],
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8.4 C om ponent Engineering

The Compiling High-level Access Interfaces for Multi-site Software (CHAIMS) is a 

mega-programming language for software module composition [32]. The CHAIMS 

compiler is to generate a variety of invocation sequences for current and developing 

standards for software interoperation, with a focus on multi-computer, distributed 

operation. The language will include the ability to set up module interfaces prior 

to executions, request performance estimates from modules prior to their invocation, 

schedule modules in parallel, monitor execution of invoked modules, interrupt inad

equately performing modules, and provide data and meta-information to customer 

interface modules.

CHAIMS supports a paradigm shift which is already occurring: a move from cod

ing as the focus of programming to a focus on composition. This shift is occurring 

invisibly to many enterprises, since there is no clear boundary in moving from sub

routine usage to remote service invocation. There are hence few tools and inadequate 

education to deal with this change.

8.5 D istributed  Environm ents

Building a distributed application or infrastructure is tough. Many problems arise 

including security, communications, reliability, availability, serviceability, scalability 

and heterogeneity. OSF’s Distributed Computing Environment helps solve many of 

these problems. See [30], [29], and [54].

Many organizations have distributed computing infrastructures where a large 

number of computers are connected together by a network. Powerful workstations 

axe located in the offices of the employees serviced by even larger capacity servers.
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Applications take advantage of the farm of computers by splitting the apparition into 

client/server partitions, where the  graphical user interface resides on the workstation 

and the application rules and databases reside on the servers. These applications can 

communicate with each other and share information.

Many problems arise in distributed application engineering and systems. Some of 

these include communication, authentication, authorization, data  integrity, data pri

vacy, sharing of information, heterogeneous environments, distributed management, 

consistency of time, reliability, availability, parallel execution, and graceful degrada

tion.

The Distributed Computing Environment (DCE) is a software component pro

vided by the Open Systems Foundations (OSF) and supporting companies. Together, 

they have built solutions to the distributed application problems.
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Software Life Cycle

A .l  In troduction

A system has a lifecycle consisting of many cycles from initial development, through 

deployment, operations, maintenance, legacy, and finally to discontinuation. The four 

fundamental phases of analysis, design, implementation, and testing can be applied 

to many different cycles and are not just limited to the development cycle as done in 

details in this thesis. See Figure A.l on page 173 for a visual representation of the 

software engineering lifecycle.

The analysis phase establishes the goals. The design phase establishes the plan to 

accomplish the goals. The implementation phase builds the system, while the testing 

phase assures quality.

A brief sketch follows on the decomposition of other lifecycles into the phases of 

analysis, design, implementation, and testing.

172
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The Lifecycle
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Figure A .l: The Software Engineering Life Cycle
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A .2 In itia l D evelopm ent

Analysis

The analysis phase defines the requirements of the system.

Design
The design phase establishes the architecture of the system.

Implementation
The system is built in the implementation phase.

Testing
The testing phase improves the quality of the system.

A .2.1 G U I D evelopm en t

Graphical User Interface (GUI) development is a special subcycle in the larger cycle 

of development of a system.

Analysis

The goal of GUI development is to establish an interface between the system 
and the customer that takes advantages of the powerful human-vision system.

Design

The architecture might include windows, icons, menus, sliders, check boxes, 
and a vast collection of other available widgets. A custom design tha t reflects 
current non-computer usage might be specified.

Implementation

In the implementation phase, the GUI is built.

Testing

Testing would include both improvements in the quality of the code and the 
usability of the system to the customer.
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A .3 Version D ep loym en t

Analysis
The goal of deployment is to make the system available for the customer. 

Design
The design phase establishes a deployment plan and environment that will sup
port the system.

Implementation
The plan is followed and the system deployed in the implementation phase. 

Testing

Verify that the deployed system is operational.

A .4 O perations

Analysis
The goal of the operational cycle is to keep the system available to customer. 
This might include a goal of lim ited down tim e and 24 by 7 operations.

Design

The design might include a staffing plan, a version control system, a help desk, 
and a disaster recovery plan.

Implementation
The implementation phase is represented in the operations cycle by the avail
ability of the system to the customer.

Testing

Reliability, Availability, and Serviceability (RAS) measures quality in the op
erational cycle. A system is reliable if it yields the same results on repeated 
trials. If a system is always available when the customer wants to accomplish 
a task, then the system is said to  have high availability. If a system is fit for 
usage, it is said to have high serviceability.
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A . 5 M aintenance

Analysis
In the maintenance cycle, a change needs to be introduced to the system. This 
could be a new feature or a simple extension of an existing feature. The main
tenance cycle may only provide corrections to discovered errors.

Design
The design phase in the maintenance cycle deals with how the change will be 
incorporated into the system.

Im plement at ion

The implementation phase in the maintenance cycle deals with building the 
code that materializes the changes.

Testing
The regression test suite is modified to accommodated the change and is used 
to measure quality.

A .6 Legacy

Analysis

The goal of the legacy cycle is to freeze the system and to place the components 
of the system in escrow. No new changes axe introduced, but the system needs 
to be available for limited customer usage.

Design

The plan might include the steps to escrow the haxdwaxe, the code, and the 
environments to run and build the system, possibly including the operating 
system, compilers, linkers, and databases.

Implementation

The implementation phase would carry out the steps necessary to bring the 
system to legacy status.
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Testing
There is limited testing because there is limited change.

A .7 F inal D iscontinuation

Analysis

The goal would be to discontinue the system from ail customer usage.

Design

The design would be the plan. This plan might reflect the building of replace
ment systems for discontinued services.

Implementation

The implementation would establish the replacements and turn off the system. 

Testing
The testing phase would be limited.
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The Supporting Engineering  

Environm ent

B .l  In troduction

Having a good methodology is important, but the methodology is only one piece of 

the whole solution. The engineering environment can be described in terms of groups.

Recall that there are four phases of analysis, design, implementation, and testing. 

A task is one action item from any one of the phases. A temporal arrangement of 

tasks is called a stage. The supporting engineering environment is established into 

groups.

Table B.l on page 179 summarizes the supporting engineering environment.

178
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Groups Goals
People Start with high quality people.
Tools Give them powerful tools.
Strategies Surround them with consistent directions.
Measurements Measure their progress.
Feedback Improve their productivity.

Table B.l: Supporting Engineering Environment

B .2 P eop le

The first group is people. One of the most important parts of an engineering envi

ronment is to have the right people. If a project starts with the wrong people, then 

nothing else really matters.

Given a small project with a small number of really good people, little else is 

required. Good people will make things happen despite unforeseen difficulties. Un

fortunately, having the right people does not scale for larger projects. As projects 

grow in people size, communication and coordination between people becomes the 

dominant controlling item.

B .3 Tools

The second group deals with tools. A person is only as good as the tools allow. 

The list of tools might include compilers, CASE, debuggers, DCE, CORBA, version 

control tools, project management tools, source control tools, life cycle tools, quality 

assurance and testing tools, database and transaction processing tools, bug and error 

report tracking systems, code test coverage tools, memory leak tools, change man

agement, interface control, rapid prototyping, error and event management, event
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simulation, information sharing and file systems, security, and many, many more. 

Of course, two of the most important decisions are the operating system and the 

hardware.

B .4 Strategies

The third group deals with strategies. A person with a good tool needs to have 

direction and a strategy.

This includes methodologies which guide the generation of the requirement, ar

chitecture, and implementation plan. This includes the architecture of the system 

as well as points of view defined by the paradigms. A mission statement focuses 

the goals. There should be conventions on how to use the tools. Software system 

simulation and a test bed axe a must.

There needs to be an understanding on how schedules, priorities, and decisions 

are made and established. The resource allocation algorithm needs to be defined. 

Task and skill definitions take place in this group, leading to potential staff training 

or changes.

Risk assessment is essential.

A list of strategies might include methodology, axchitecture, paradigms, mission, 

conventions, standards, schedules, priorities, decision process, resource management, 

risk management, and life cycle phases.

This section of the thesis deals with methodology. Other sections deal with archi

tectures and paradigms.
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B.5 M easurem ents

It is impossible to control what can’t be measured. If we had no measurements, then 

no metric would show the effect of a change in a control parameter. The fourth group 

deals with collecting information about the environment. The measurements, results, 

and reports are all defined at this group.

A list of metrics might include the number of faults both reported and fixed, lines 

of code, closeness to plan, resource utilization, and performance. Lines of code is a 

problematic metric that does not work well in many situations, including composition. 

Many times the current progress is reported to be on plan, but when the plan indicates 

a deliverable, it is late.

B .6 Feedback

The last group is feedback. Plans can be monitored, leading to re-planning or plan 

repair. Ideally, plan optimization and the removal of chronic problems can be accom

plished.

A list of feedback actions might include plan repair, re-planning, total quality 

management, continuous quality management, process changes, and plan optimiza

tion.
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R equirem ents Gathering

C .l  In troduction

This chapter addresses the issues of modeling a real-world customer’s need using 

requirement gathering techniques, fundamental doctrines, and tools.

The processes in a software engineering methodology transform a real-world cus

tom er’s need into a computer system. The computer system is at best a model of the 

real-world customer’s need. A close match between the computer system’s behav

ior and the real-world customer’s need’s behavior enables the model to predict and 

simulate.

This thesis recognizes the importance of establishing the computer system model 

but can only give insights and not scientific guidance.

For more information on these topics see [3], [59], [70], [91], [108], [45], [125], [127], 

[129], [9], [34], [35], [55], [69], [133], [111], and [72].

182
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C.2 M odels

The distinction between declarative and imperative knowledge is well argued in com

puter science circles, especially in the field of artificial intelligence. Declarative knowl

edge represents the “what” knowledge, while imperative knowledge represents the 

“how” knowledge. Both are needed to gain full understanding.

A model is a representation of a real-world system. A model may use simplifying 

assumptions and approximations to capture only a portion of the real-world system. 

Given a sequence of inputs, the model makes a prediction. If these predictions match 

the real-world’s systems reactions to the corresponding inputs, then the model is 

validated.

The customer has real-world needs. Requirement gathering generates a declar

ative model of the customer’s needs. The architecture and implementation phases 

transform the declarative model into an imperative model. The testing phase assures 

that the generated imperative model matches and predicts the customer’s real-world 

needs as expressed in the requirement’s declarative model.

See Figure C.l on page 184 for the three basic models of a real-world customer 

needs. See Figure C.2 on page 185 for the correspondence between the three basic 

models and declarative and imperative knowledge. See Figure C.3 on page 186 for 

the validation role of quality assurance.

C.3 Q uality A ssurance

There is no clean line between declarative knowledge and imperative knowledge. Fre

quently, a mixture of both kinds of knowledge are present.

Requirements seldom contain purely one kind of knowledge. Rather, a mixture of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Appendix C: Requirements

Different Models

Models 

• Requirements

• Architecture 

•Code

Figure C.l: Three Basic Models
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Figure C.2: Declarative and Imperative Knowledge
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Figure C.3: Quality Assurance as Validation
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both kinds of knowledge are present. Some requirements are best modeled by declara

tive knowledge, while other requirements are best modeled by imperative knowledge.

Some requirement gathering techniques and tools emphasize one kind of knowledge 

over another. For example, The Fusion technique of D. Colemen et al defines the 

system operation schemes as declarative knowledge only, while the interaction graphs 

are defined as imperative knowledge only. This forced split becomes a hindrance for 

many real-world problems.

Another technique of Recursive-iterative development: ‘Essays on Object-Oriented 

Software Engineering’, Volume 1 by E.V.Berard, 1993, combines both kinds of knowl

edge at each level of abstraction. As one abstraction is refined into another ab

straction, the combination of declarative and imperative knowledge is replaced with 

another combination of declarative and imperative knowledge.

The technique of Eiffel attaches declarative knowledge in the form of pre-conditions, 

post-conditions, and invariants to imperative knowledge. The imperative knowledge 

is materialized as algorithms and data structures.

Functional programming environments, like Mathematica, are declarative in na

ture. The system and not the customer discovers the imperative steps to solve the 

problem.

Mathematics also contains the two kinds of knowledge. The axioms and theorems 

are examples of declarative knowledge, while the proof is an example of imperative 

knowledge. Both are needed.
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C .4 Storyboard

A storyboard is a technique used to rehearse typical customer scenarios before the 

application is built. It could consist of hand-drawn overheads used in a presentation 

to the team building the requirement document, including the customers. The story

board conveys a rough idea of the application's behavior, the application’s interaction 

with the customer, and visible components.

The typical scenarios of the system are rehearsed in this draft fashion. Often, sig

nificant errors can be caught and prevented before they propagate into other phases 

of the project. Alternatively, the storyboard might be a GUI-only version of the ap

plication where pictures of the output screens are presented. These GUI-only screens 

have no underlying application code but give an idea of what the customer will see 

and feel while running the application. The GUI builder in NextStep is a good exam

ple of a tool that generates high quality storyboards of an application complete with 

limited functionality and application stubs. An application stub contains only the 

interfaces and needs associated algorithms and data  structures to complete the appli

cation functionality. In this case, if the storyboard is acceptable, then the application 

stubs can be implemented. See [122] and [6].

C.5 Som e Fundam ental D octrines

The following levels of abstraction and points of views are taken from [36], [37], [39], 

and [38].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Appendix C: Requirements 189

C .5.1  A bstraction

The process of establishing the decomposition of a problem into simpler and more 

understood primitives is basic to science and software engineering. This process has 

many underlying techniques of abstraction.

An abstraction is a model. The process of transforming one abstraction into a 

more detailed abstraction is called refinement. The new abstraction can be referred 

to as a refinement of the original one. Abstractions and their refinements typically 

do not coexist in the same system description. Precisely what is meant by a more 

detailed abstraction is not well defined. There needs to be support for substitutability 

of concepts from one abstraction to another. Composition occurs when two abstrac

tions are used to define another higher abstraction. Decomposition occurs when an 

abstraction is split into smaller abstractions.

Information management is one of the goals of abstraction. Complex features of 

one abstraction are simplified into another abstraction. Good abstractions can be 

very useful while bad abstractions can be very harmful. A good abstraction leads to 

reusable components.

Information hiding distinguishes between public and private information. Only 

the essential information is made public while internal details are kept private. This 

simplifies interactions and localizes details and their operations into well defined units.

Abstraction, in traditional systems, naturally forms layers representing different 

levels of complexity. Each layer describes a solution. These layers are then mapped 

onto each other. In this way, high level abstractions are materialized by lower level 

abstractions until a simple realization can take place.

As Hoare [68] said,

The major achievement of modern science is to demonstrate the links
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between phenomena at different levels of abstraction and generality, from 
quarks, particles, atoms and molecules right through to stars, galaxies, 
and (more conjecturally) the entire universe. On a less grand scale, the 
computer scientist has to establish such links in every implementation of 
higher level concepts in terms of lower. Such links are also formalized as 
equations or more general predicates, describing the relationships between 
observations made at different levels of abstraction.

The general technique for crossing a level of abstraction is to define 
the way in which an observation at one level of abstraction corresponds 
to one or more observations at the other level. This relationship can itself 
be described by a predicate (often called a linking invariant) which relates 
an abstract observation (in the alphabet of the specification) to a more 
concrete observation (in the alphabet of the implementation).

See Figure C.4 on page 191.

Abstraction can be accomplished on functions, data, and processes. In functional 

abstraction, details of the algorithms to accomplish the function are not visible to 

the consumer of the function. The consumer of the function need to only know the 

correct calling convention and have trust in the accuracy of the functional results.

In data abstraction, details of the data container and the data elements may 

not be visible to the consumer of the data. The data  container could represent 

a stack, a queue, a list, a tree, a graph, or many other similar data  containers. 

The consumer of the data container is only concerned about correct behavior of the 

data container and not many of the internal details. Also, exact details of the data 

elements in the data container may not be visible to the consumer of the data element. 

An encrypted certificate is the ultimate example of an abstract data element. The 

certificate contains data that is encrypted with a key not know to the consumer. 

The consumer can use this certificate to be granted capabilities but can not view nor 

modify the contents of the certificate.
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Abstractions
One Abstraction

Mapped to 
another Abstaction

Figure C.4: Abstractions
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Traditionally, data abstraction and functional abstraction combine into the con

cept of abstract da ta  types (ADT). Combining an ADT with inheritance gives the 

essences of an object based paradigm.

In process abstraction, details of the threads of execution are not visible to the 

consumer of the process. An example of process abstraction is the concurrency sched

uler in a database system. A database system can handle many concurrent queries. 

These queries are executed in a particular order, some in parallel while some sequen

tial, such that the resulting database can not be distinguished from a database where 

all the queries are done in a sequential fashion. A consumer of a query which repre

sents one thread of execution is only concerned about the validity of the query and 

not the process used by the database scheduler to accomplish the query.

C .5.2  P oint o f  V iew s

A point of view is a way of looking at a problem. Each point of view generates a 

view. Views represent different ways in which the solution can be presented. Each 

view describes a solution. These views coexist. One view is not layered on top of 

another view; rather one view is expressed in terms of another view.

One of the views becomes the foundation view representation and the basis for 

all other views. The other views are then expressed in terms of the foundation view. 

See Figure C.5 on page 193.

For example, consider a relational database. There is one physical table architec

ture. With the aid of SQL you can express views of these tables. The view table is 

not physical but logical. The view table coexists with the other tables.

There is not just one view in a system, but many views. Each view describes the 

solution from a particular perspective. One view maps onto another. See [36], [37],
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Point of Views

Mapping

One View Another View

Figure C.5: Point of Views
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[39], and [38].

Enterprise View

The enterprise view is used to capture and specify organizational requirements and 

structure. These are expressed in terms of policies, enterprise objects, communities, 

workflow, permissions, prohibitions, and obligations.

Inform ation View

The information view is used to describe the data  required. This is accomplished 

though the use of schemes, which describe the state  and structures.

Some tools currently used to define the information level of abstraction include 

entity-relationship diagrams, conceptual schemes from OMT, and Z or other Formal 

Definition Techniques.

Com putational V iew

The computational view defines the architecture. In this view, the pieces, the parts, 

interfaces, and behaviors are defined. Techniques such as encapsulation of data and 

processing, offered by the object-based paradigm, will be quite useful. There may be 

multiple interfaces and behaviors for any one part. The computational view is used 

to specify the functionality of the system.

There are three main components to the computational abstraction. They include 

the interface, the behavior, and the environment contract. The interface defines 

the types and functions. The interface also includes the well-formed sentences that 

are allowed. Some varieties of sentences could include a series of interrogations and 

announcements; a stream of non-atomic actions that continue throughout the lifetime
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of the interface; or signals and expected responding signals.

The behavior is described by a set of action sequences. The behavior may in

clude some internal actions and is constrained by the  environment. The environment 

contract includes quality of service constraints, real time constraints, usage and man

agement constraints.

Infrastructure V iew

The infrastructure view defines the requirements for distribution and distribution 

transparency. The infrastructure view is also known as the engineering view. Each 

basic computational element corresponds to one or more basic distributed elements 

implemented with components of the infrastructure. Infrastructure components in

clude the concept of a communication channel with marshaling and persistence, the 

concept of the hardware, the operating systems, the processes, and memory. A pro

cess may support deactivation, checkpointing, reactivation, recovery and migration.

Technology View

The technology view defines the hardware and software components of the implemen

tation.

C .5.3  Scale

The model is at a particular scale. The more abstract and general, the higher the 

scale. The more concrete and detailed, the lower the scale. The scale might include 

differences in space units and in time units.
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C .5 .4  C lassification

Classification is the systematic arrangement into groups or categories according to 

some established criteria. Classification establishes the taxonomy.

C .5 .5  G eneralization

Several classifications may only differ by a few concepts. Sometimes these concepts 

can be generalized into a more abstract representation; into a generalization. Many 

times, solutions are easier to establish in the more general case and then specifying a 

more detailed case.

C .5 .6  C lustering

Sometimes several classifications may naturally be associated with each other, having 

many concepts in common. These classifications form a cluster. The clustering may 

be based on physical location.

In functional clustering, classifications are centered around functions. In data 

clustering, classifications are centered around data, while in object based clustering, 

classifications are centered around objects. The object based paradigm uses the 

concept of class hierarchies to naturally express clustering.

Encapsulation is a concept similar to the concept of clustering. In encapsulation, 

an enclosure is placed around a grouping and only threw well-defined openings are 

interactions allowed. A cluster may not have such a well defined enclosure.
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C .5 .7  B oundaries

Many interesting concepts have their most significant meaning at the boundaries. By 

exploring the boundaries, the true nature of the classification may be uncovered and 

understood.

C .5.8  C oupling

Coupling is the interdependence among individual components influenced by the in

terfaces, the kind of connections, and the kind of communications.

There are many different kinds of coupling. In data  coupling, two components 

share the same data. Examples of data coupling include the usage of a data base 

to connect two systems. In stamp coupling, two components share a common data 

structure type which is passed in parameter calls. In common-environment coupling, 

two components communicate through a third party: the common-environment. In 

external coupling two components share a common-global data item.

C .5.9  C ohesion

Cohesion is the degree of closeness of the functions within a component. For example, 

consider a library of functions. If the library contains similar functions, then it is said 

to have high cohesion. A general purpose library, with many different functions, is 

said to have low cohesion.

C .5.10  O bservations

Higher quality observations may lead to a  higher quality model.
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C.6 C om ponents in a  R equirem ent D ocum ent

A requirement document should contain the domain ontology, artifacts, actions, 

states, typical scenarios, and atypical scenarios.

See Section 2.2 on the analysis phase located on page 6.

C .7 Techniques

There are many different modeling techniques used to establish requirements. They 

include data models, process description, formal methods, textual specification, and 

use-case driven analysis.

Data structures and algorithm are fundamental in the field of computer science. 

Data modeling techniques concentrate on defining the data structures. Tools can 

be used to establish entity-relationship data models. Process description techniques 

concentrate on defining the algorithms. Tools can be used to establish flow charts.

The choice between these two techniques is driven by the task at hand. If the 

data represents a very stable concept in the model, then data modeling techniques 

will work best. If the processes represent a very stable concept in the model, then 

process description techniques work best. In my experience, data modeling techniques 

tend to be more fruitful than process description techniques.

A data modeling technique naturally leads to a database-centric system. A process 

description technique naturally leads to a computational-centric system.

Formal modeling techniques are declarative in nature. Formal modeling techniques 

may express the model in terms of mathematical logic predicates, usually based on 

first order logic. The trick is to establish tautologies that are always true under all 

interpretations and models.
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Once the formal model is established, theorems in the model represent programs. 

A proof or deduction represents the algorithms and the structure of the model repre

sents the data structure. A lemma represents a component and the corollary repre

sents a reusable component.

A textual specification techniques establishes a model using a written natural 

language. Adjectives and nouns form noun phrases tha t represent da ta  while verbs 

and adverbs form verb phases that represent algorithms or actions. The advantage of 

a textual specification technique is the expressiveness of language. The disadvantage 

is the ambiguity of language.

Use-case driven analysis techniques are centered around typical scenarios. This 

technique naturally leads to the definition of objects: a  collection of both data struc

tures and algorithms.

A similar technique of using storyboards leads to the definition of objects, states, 

and state  transitions.

C.8 Sum m ary

This chapter addressed the issues of modeling a real-world customer’s need using 

requirement gathering techniques, fundamental doctrines, and tools.
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D ecision M aking

Priority setting is only one of many decisions that are made on a project. A method

ology does not state how a decision is made, just that a decision needs to be made. 

The WaterSluice methodology only requires that the priority decision process be goal 

directed to the final outcome of generating systems.

However, making decisions is so fundamental that a dedicated chapter is necessary 

to establish mathematical viability. See [50] for more details.

D .l  A ltern ative  Tasks

A large project is divided into smaller alternative tasks. These alternative tasks may 

be independent or interdependent. Some alternative tasks may be inclusive while 

others exclusive. Picking one alternative task to accomplish next represents a choice 

and a decision point.

200
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Let

Ti, T2, . . . ,  Tn

be the n alternative tasks.

D .2 O b jectives

Objectives are used to measure the success of the system. Associated with each 

objective is a positive numerical weight indicating the weighted contribution of this 

objective to the final success of the system.

Let

Oi, 02, . . . .  Om

be the m  objectives.

Let

W u  w 2 w m

be the m  weights.

D .3 O utcom es

An outcome is the estim ated effect on the objective if an alternative task is ac

complished. For every alternative task and for every objective is an outcome. The 

alternative tasks and objectives build the outcome matrix.

Let O be the outcome matrix
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O11O12 . . . 0 \ m  

O21O22 ■ - • Oim

^ O n l O n 2  .  .  . 0  n m  J

where OtJ is the outcome of the ith  alternative task dealing with the j th  objective.

D .4  U tility  Function

A utility function transforms an outcome into a numerical value and measures the 

worth of an outcome. The utility of an outcome may be negative or positive. This 

utility function may be a simple table, a linear function, or a more complex function. 

The outcome matrix is converted to the utility matrix using the utility function.

Let U be the utility matrix

f  U U U l 2 . . . U l m  >

^ 2 1  f ' 2 2  • • - U 2 m

\  u n lu n2 • • • Unm J

where Uij is the utility of the ith  alternative task dealing with the j th  objective.

D .4 .1  T em poral U tilities

The utility matrix may be a tensor over time. In this case the effective utility matrix 

is the temporal average.
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If there axe p time intervals then

(fa = E ( i /p ) (£ /,„)
7 = 1

D .4 .2  U ncerta in  U tilities

The utility may be uncertain and risky. In this case, the effective utility matrix is a 

probability weighted average.

Let pi be the probability of an utility in state 1. Let pi be the probability of an 

utility in state 2 where p\ +  p? =  1 

Then

Uij — +Pi{Uij)2

is the effective utility.

D .5 D ecision  R ules

D .5 .1  W eighted  Sum s

For each alternative task T, calculate the weighted sum 5,-.

m
Si = £  W iU ii

j=i

The alternative task associated with the highest weighted sum represents the 

decision.
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D .5 .2  W eigh ted  P rod u cts

For each alternative task T, calculate the weighted product 5,.

s ,  =  f [ u ^
j=i

The alternative task associated with the highest weighted product represents the 

decision.

D .5 .3  D ev ia tio n

For each alternative task Ti calculate the weighted norm S t .

1/ 2

j=i

The alternative task eissociated with the highest weighted norm represents the 

decision.

D .6  T he D ecision  Process

The decision process is simple.

1. Establish objectives.

2. Establish alternative tasks.

3. Establish outcomes. For each alternative task and for each objective establish 
an outcome.

4. Establish utility. For each objective, establish the utility function and apply 
the utility function to every outcome. If the utilities have a temporal nature,
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adjust to the effective utility. If the utilities have uncertainties, adjust to the 
effective utility.

5. Apply a decision rule.
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Network O perating System

The requirement document for a Network Operating System (NOS) follows.

E .l  Introduction

A typical network consists of thousands of heterogeneous computers, each running 

their own operating system and managing their own peripheral devices and file sys

tems. The computers share a common network with common services, but they are 

independent machines that have been extended to use the network. The customer 

can easily hop between machines. Logically, the network is thousands of indepen

dent machines hooked together with a common communication interface. To each 

machine, the network is just another peripheral communication device.

Now consider a network of thousands of heterogeneous computers, but under one 

network operating system (NOS). The network is the computer. All physical devices 

hanging onto the network, either CPUs or other peripherals, are network resources. 

Logically, the network is one computer that happens to have thousands of machines, 

peripherals, and services.

206
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A customer authenticates to the NOS and is granted capabilities. A capability 

represents the permission to use a resource. The customer has control of all shared 

resources on the NOS, including a vast collection of services. Where the services 

are located is invisible to the customer. A customer’s job may be run on a variety 

of available computers. From the customer’s perspective, the desktop machine is 

transformed into a very powerful computer with a vast reservoir of resources.

Each desktop machine has a native operating system plus an extension that brings 

the native operating system into the NOS. This extension is a new network transport 

layer called principal to principal (PTP) that is layered on top of the existing TCP 

and UDP network layers, providing principal to principal communication. This layer 

provides a secure, authenticated, authorized, and private communication between two 

principals. A principal could be a person, a computer, or an application.

Along with the PTP transport layer is a NOS finder. The NOS finder is the boot 

application that knows how to find all other NOS applications.

A family of new protocols should be established that provide the underlying sup

port for the NOS. These new protocols might include support for process management, 

virtual memory management, locks, events, transactions, and peripheral management 

to name a few. The NOS is message-based.

A desktop computer can be connected to the network in several ways. As a 

foreign desktop computer, the network looks like a traditional network providing 

basic network services and transport layers of communication. Nothing has changed 

from the more traditional view of a network.

As a secure desktop computer, only secure access to a gateway NOS machine is 

available. The secure desktop computer only needs encryption software to establish 

a secure link over traditional TCP communication. The secure desktop computer
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establishes a secure link to a known NOS machine. This known NOS machine now 

can act as a gateway for ail other NOS services.

The NOS desktop computer is a peer member on the NOS. The NOS desktop 

computer requires a full installation of the PTP transport layer and the NOS finder.

There are a collection of core computers which provide the services of the NOS. 

A NOS consists of desktop computers under the control of the customer and a vast 

reservoir of resources provided by the core infrastructure NOS machines.

E.2 Goals 

E .2.1  Simple

Simple to install, maintain, update, manage, and use.

E .2 .2 High A vailab ility

From the customer’s perspective, the NOS should seldom be unavailable. The NOS 

could be slow and lose some services, but only infrequently be unavailable.

A system that has high availability is not as reliable as a system that has fault 

tolerance. Experience has shown that the cost-advantage tradeoffs favor high avail

ability.

E .2 .3 Support C hange

As new technology becomes available, the NOS grows and bends to accommodate 

change.
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E.2.4 Support L ongevity

If something worked in the past, it should work now, though perhaps not with the 

best performance. It should take a long time for a service to be completely removed 

from the NOS.

E .2 .5 L egacy Support

There should be an easy way to bring non-native NOS services into the NOS.

E .2.6 L ocal M achine A u ton om y

Every local machine gets to determine the level of sharing with the NOS. Local 

operating systems and applications will continue to run even if the machine is a 

member of the NOS.

E.3 C om ponents: T hings and A ctions

E.3.1 U niversal U nique Id en tity  (U U ID )

Everything in the NOS has a UUID. The UUID is typed.

Actions on UUIDs include create, set type, get type, and check type.

E.3.2 Principal

People, machines, and services are principals. Every principal has a UUID, is authen

ticated, and is granted capabilities by the authorization service.

There is one special principal: NOS root. Each machine has an identity of local 

root.
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Every principal has a password. For non-human principals, the password is stored 

in a local key table. Every principal has associated demographic information. Man

aging principals is the basis for account management.

Actions on principals include create, modify, delete, disable, enable, authenticate, 

and logout.

Actions on passwords include set and randomize.

Actions on key tables include create, modify, and delete.

E .3.3 A u th en tica tion

Given a principal’s name and password, the NOS security service authenticates this 

principal using either public key or private key algorithms. Authentication is valid 

for a finite period of time. Proxy and delegation are supported.

A proxy is a principal that acts on another principal’s behalf. For all practical 

purposes, the proxy becomes the principal. The security system allows the proxy to 

continue, but logs the fact that it was the proxy and not the principal that accom

plished the task.

Delegation temporarily grants one principal’s capability to another principal. 

Actions include login and logout, delegate, and proxy.

E .3.4  A u th orization

The authorization service grants capabilities to principals. Protected objects in the 

environment have access control lists (ACLs). Before access is granted to a pro

tected object, the principal’s capability is compared to the  ACL and the associated 

permission is granted or denied.

ACL actions include create, modify, delete, and validate.
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E .3 .5  D ata  P rivacy

Communication is protected with an encryption algorithm. Alternatively, objects 

may be encrypted. Digital signatures can verify the content.

Data privacy actions include encrypt, decrypt, sign, and verify.

E .3 .6  P rocess M anagem ent

A process is a basic unit of execution. Each process has a principal identity and is 

authenticated and authorized. A process may be on many machines on the network 

and migrate to another machine for load balancing.

A process has a large sparse address space which is dynamically mapped.

Every process has a collection of ports used for communication. Each category of 

communication is supported by a message-based protocol. The ports use only secure, 

authenticated, and authorized communication. From the process view, the NOS is a 

collection of processes where all communication is done through ports. This includes 

process control, 10, exceptions, and faults.

Every process has a priority and at least one thread. A multi-threaded process 

may be running on a processor group.

Processes provide the services of the NOS and may form groups of equivalent 

services. The requesting customer gets one service from the group.

Process actions include create, delete, migrate, suspend, resume, and change pri

ority.

Port actions include queue, dequeue, and wait.

Thread actions are similar to process actions.
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E .3 .7  N etw ork Binary

One significant component of a process is an image. An image is similar to an appli

cation. The NOS associates an image with a process and then starts the execution. 

Images are built for particular hardware instruction set, thus dictating the class of 

machines that the image can run on. Some machines may have an instruction set 

emulator, which allows for some images to run on non-native machines. There is no 

universal network binary.

E .3 .8  D istributed  File S ystem

The Distributed File System (DFS) provides for information sharing. Every principal 

has a home directory which is network mounted.

Normal actions supported by a traditional file system are supported, including 

record level access.

E .3 .9  D isk Space M anagem ent

There are physical disk units under the control of the NOS.

Disk actions include seek, read, write, allocate, free, mount, and dismount.

E .3 .10  N O S C P U  Scheduling

A process may be on any machine in the NOS. Local scheduling is done by the local

OS. The NOS will move a process from one machine to another in order to load 

balance the network. Of course, the cost of moving the process may be high, so the 

expected benefit should also be high.
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Once a process is on a particular machine, the local operating system and scheduler 

takes over.

E .3.11 System  C om m ands and Shell

There is a collection of control commands used to gather information and control the 

NOS. The command interface is programmed in a fashion similar to the UNIX shell.

System commands might include the UNIX equivalence of ps, jobs, cd, pwd, mkdir. 

rm, rmdir, date, time, cleax, man, passwd, logout, lpr, Ipq, Iprm, Is, more, page, head, 

tail, mv, cp, file, chmod, chown, chgrp, <, |, > , &. > > , fg, bg, kill, echo, sleep, ctrl-z. 

ctrl-d, In, tee, find, grep. nohup, wait, nice, renice, exit, set, setenv, pushd, dirs, 

popd, alias, uniq, sort, cmp, diff, tax, dump, restore, at, crontab, su, biff, compress, 

uncompress, crypt, tr, od, mount, unmount, whoami, tty, style, spell, awk, make, 

imake. sort, who, w, finger, talk, mesg, telnet, rn, and X.

Preferences could be stored in UNIX equivalent .login, .cshrc, .history, .plan, 

.project, .rhosts, .signature, .forward, and .vacation.

E .3.12 R un T im e Library Support

The equivalence of a run tim e libraxy now becomes a collection of run tim e services. 

Each service is a process running in least at one location in the NOS and potentially 

many locations. There is a namespace of services.

The path variable is a list of locations for finding services. When a service is 

requested, the path is walked to find the service. The elements in the path variable 

correspond to locations in the distributed file system.
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E .3 .1 3  M em ory M anagem ent

The virtual memory system is now three-tiered. First, RAM on the local machine is 

viewed, then disk on the local machine is viewed backed by disk on the NOS.

NOS memory actions are used to manage movement of pages from the NOS disk 

to  a local disk or local RAM.

E .3 .1 4  I /O  and Peripheral D ev ice  M anagem ent

Every peripheral device has a unique identity. A stub on the local machine under

stands the NOS I/O  port protocol and translates the protocol to the series of local 

operating system calls to manage the local peripheral. The results are then returned 

back through the port.

Sample peripheral devices might include printers. CDROMs. disks, tapes. CD 

Recorders, and floppy disks.

Peripheral actions might include load or unload device driver and allocated or 

unallocated device. Some device specific actions might include read, write, and seek.

E .3 .1 5  N etw orking

Needless to say, all computers in the NOS axe network smart.

E .3 .1 6  T im e

Clocks are maintained in a consistent fashion across the NOS.
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E .3 .17  T ransaction

There is a transaction manager to govern atomic actions. The transaction manager 

should support at least two-phased commit.

E .3.18 D istrib u ted  Locks

There is a distributed lock manager.

Lock actions include set, check, and release a read or write lock.

E.4 States

The NOS maintains state  in the list of all processes, services, authenticated principals, 

peripherals, and machines.

Every principal has a family of states including authenticated, not authenticated, 

enabled, and disabled.

The NOS maintains a list of all available services and their physical locations.

E.5 T ypical Scenarios 

E.5.1 D ay-to -D ay

A customer authenticates to the NOS on an existing NOS smart machine. At the 

customer’s disposal is the local machine and the NOS services. The Distributed 

File System contains the customer’s home directory with the customer’s preferences. 

Regardless of which machine the customer authenticates on, the customer’s home 

directory with the customer’s customizations axe present. The customer can easily
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find a vast number of network resources. All resources appear local to the customer, 

but in reality, they are scattered throughout the network. The customer is very happy 

to find his favorite APL-based calculator still available for a quick matrix inversion. 

The customer logs off the system when finished.

E .5 .2  M achine Setup

To bring a machine into the NOS, the customer first establishes the native local op

erating system. This might be Windows, NT, UNIX, Mac, Next, Mach, OS2, or any 

other existing operating system. The PTP transport is installed along with the NOS 

finder. The NOS finder is an application which can locate all other NOS applica

tions. Using a boot program and the customer identity, the rest of the installation is 

completed.

E .5 .3  C ustom er Setup

A customer will have to create a NOS principal identity.

E .5 .4  Service Setup

The service is established in the service namespace defining the demographical infor

mation. The associated files are loaded into the DFS. If the service is NOS sm art, no 

additional steps axe needed.

If the service is NOS dumb, then the service needs to be wrapped into the NOS. 

This is accomplished by creating NOS peripheral stubs for the terminal, key boaxd, 

mouse, haxd disk, and any other needed peripherals. The NOS dumb service will 

be running on a NOS smaxt machine. When the service is activated, the peripheral
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stubs will send the information to the requesting customer machine.

E .5 .5  N O S  Setup

The NOS is a collection of core services. The network is established with the PTP 

transport layer. The core services include authentication, authorization, namespace 

management, DFS, process management, port management, virtual memory man

agement, and peripheral device management.

E .5 .6  P eripheral D ev ice  Setup

A peripheral device is installed onto a NOS smart computer. The device is given an 

identity in the namespace and a peripheral wrapper, making the device NOS smart.

E .5 .7  N O S  developm ent

A developer works with a thread-smart language. The NOS development environment 

is similar to any other operating system development environment. An API family, 

now based on messages, ports, and protocols, is provided.

To create a NOS service is as easy as creating a run time library. The dynamic 

link process is replaced with a NOS smart finder.

E .6 A typ ica l Scenarios

E .6 .1  B ring th e  N O S D ow n

Shut down all core services on the network. The remaining machines on the  network 

still understand TCP or UDP but no other NOS network services are available.
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E .6.2  R em ove a  M achine or Service

Remove the eissociated files and reboot.
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D ocum entation

Table F .l on page 219 summarizes the components of the generated customer manual 

and their origins.

Existing Document Customer Manual
Requirements Introduction

Definitions of all components. 
Definitions of all actions. 
Definitions of all states.

Scenarios How to accomplish ...?
Architecture How does it work?
Implementation Screen shots

Table F .l: The Customer Manual

The requirement documents, the usage scenarios, and the architecture documents 

have already been completed in the four phases. If documentation is accomplished 

during the four phases, the customer manual is easy to generate. Simply cut and 

paste sections of the already existing requirement and design documents along with 

screen shots from the application into a consistent customer guide.

219
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Glossary

A nalysis : The software engineering process that generates the requirements.

A rc h ite c tu re  : The components of a system, their behavior and interaction.

C hange M anagem en t : A software engineering process that controls changes to 

a system once a feature freeze has been invoked.

C hange O rd e r C on tro l : When a component is completed, changes to the com

ponents are placed under this process to manage changes.

C o m p o n en t T esting  : Testing major components of the system or the entire 

system with simple usage.

C ritic a l E r ro r  : An error in the system that prevents the functioning of a usage 

scenario with no known work-around. Many features of the system may be 

working, but a critical error prevents the scenario from functioning under certain 

situations.

C ritic a l T ask  : The element of a plan for building a system, upon which the success

220
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or failure of the rest of the system hinges. A system may have many critical 

tasks.

D esign  : The software engineering process that generates the architecture.

Feedback  Level : The fifth level in a software engineering methodology support 

environment. Once measurements are available, parameters can be varied and 

their effects monitored.

G old  S ta n d a rd  : The expected and trusted results of the system against which all 

other results are compared. Current results that differ from the gold standard 

indicates an error condition.

In te rn a l T esting  : Testing at the lowest level of the system.

Im p le m e n ta tio n  : The software engineering process that establishes the code for 

the system with the aid of people and tools.

Life C ycle : The cradle-to-grave existence of a  software system from initial con

ceptions through development, deployment, version releases, and final phase 

out.

M easu rem en t Level : The fourth level in a software engineering methodology 

support environment. This level deals with metrics. Measurement is the first 

step in gaining the ability to control.

M eth o d o lo g y  : The body of methods, rules, postulates, procedures, and processes 

that are used to manage a software engineering project. An algorithm that finds 

a solution with a given performance in a given environment.
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O nto logy  : The high level definitions of the objects, their actions, and behavior 

in a system. Sometimes objects are defined by their noun phrases and their 

actions defined by their verb phrases, while their behavior is defined by the 

communications.

P a rad ig m s : A point of view about how to understand and solve a problem.

P eop le  Level : The first level in a software engineering methodology support 

environment. Having the right people on the project is very important.

P ro d u c t  : A system which is ready for general release to the market place.

P ro o f  o f  P r in c ip le  : When enough of the system is built that the developers can 

convince themselves that the rest of the development of the system can proceed, 

the system is said to be in a proof of principle state. This usually includes the 

successful implementation of the critical tasks.

P ro je c t  M a n ag em en t : The software engineering process aided by tools which 

helps the expedition of a plan. Resources, priorities, tasks, schedules, and 

dependencies are coordinated.

P ro to ty p e  : The system is ready for customer testing but not fully functional. 

There may be an early prototype called alpha and a later prototype called 

beta. Enough of the system is completed to convince customers that a real 

product will soon follow.

R eg ression  T es t : A testing technique where a suite of test cases are evaluated 

against the system to assure the expected behavior as established by the gold 

standard.
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R e q u irem en ts  : The necessary capabilities and behavior of a system from the 

customer perspective defines the functional requirements. Non-functional re

quirements. for the most part, axe introduced as an artifact of the design.

R isk  A nalysis : The software engineering process that defines the pro and con for 

each decision point and an estimate of probability for success and failure. Often 

a fall back position or an exit strategy may be defined.

Scenarios : A description of the typical and atypical usage of a system.

Screen  S hots : A captured GUI window from a running system.

Source C ontro l : The softwaxe engineering process aided by an application, defin

ing the code versions and baselines of the system. The source control application 

also coordinates the changes done by a team of individuals.

Sp ira l : A cyclical softwaxe engineering methodology where the analysis, design, 

implementation, and testing phases follow each other in an iterative fashion as 

they spiral towards a solution.

S ta te  : A sequence of settings and values which distinguishes one time-space snap 

shot of a system from another.

S to ry  B o ard  : A softwaxe engineering process used to walk through a usage of a 

system, usually before major components axe completed, to raise confidence in 

usability.

S tress T esting  : Testing the system under a load which is higher than expected in 

actual usage.
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S tra te g y  L evel : The third level in a software engineering methodology support 

environment. Given people with powerful tools, a direction is still needed as 

well as underlying foundations abput how to accomplish the task.

T esting  : The process that assures a level of confidence in the quality of a product.

T est P la n  : The sequence of steps needed to raise the level of confidence in the 

quality of the product.

Tools Level : The second level in a softwaxe engineering methodology support 

environment. High quality tools enhance the performance of the team and 

place a high water mark on the complexity of the systems which can be built.

U n it T estin g  : Testing related groups of functions.

V ersions : A system can be defined as a queue of many stable versions. Potentially, 

each version reflects new functionality or improvements in quality.

W aterfa ll : A sequential softwaxe engineering methodology where the analysis, 

design, implementation, and testing phases proceed one after another, like water 

flowing over a fall.

W aterS lu ice  : A best-first softwaxe engineering methodology where the analysis, 

design, implementation, and testing phases proceeded in a prioritized fashion, 

going after the gold nuggets first. As the method process proceeds, choices are 

constrained. The WaterSluice borrows the iterative nature of the spiral method 

along with the steady progression of the waterfall method.
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Acronym  K ey

ACL Access Control List

ADIT Analysis Design Implementation Testing

CDROM Compact Digital Read Only Memory

CHAIMS Compiling High-level Access Interfaces for Multi-site Software

CPU Central Processing Unit

DADL Distributed Architecture Description Language

DCE Distributed Computing Environment

DFS Distributed File System

GUI Graphical User Interface

GUIWIMP Graphical User Interface, Windows, Icons, Mouse, and Pointer

10 Input and Output

NOS Network Operating System

NT New Technology operating system from Microsoft

0S2 Operating System Two from IBM
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OSF Open Systems Foundations

PTP Principal to Principal network layer

RAM Random Access Memory

RAS Reliability, Availability, and Serviceability

SQL Sequal Query Language

TCP Transport Control Protocol

UDP User Datagram Protocol

UML Universal Modeling Language

UNIX AT&T trademark for THE Operating System

UUID Universal Unique Identity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Bibliography

[1] J. R. Abrial. On constructing large software systems. In Algorithms, Software. 

Architecture. Information Processing 92. IFIP 12th World Computer Congress. 

volume A-12, pages 103-12, 7-11 September 1992.

[2] Hira Agrawal. Mining system tests to aid software maintenance. IEEE Com

puter, 31(7):64-73, July 1998.

[3] 0 . Al-Saadoon. Aura-cfg/e: An object-oriented approach for acquisition and 

decomposition of dfds from end users. Seventh International Conference on 

Software Engineering and Knowledge Engineering, Skokie, Illinois: Knowledge 

Systems Institute, pages 1-7, June 1995.

[4] R. Allen and D. Garlan. Beyond definition/use: Architectural interconnection. 

Proceedings, Workshop on Interface Definition Language, January 1994.

[5] American National Standards Institute. Reference Manual for the Ada Pro

gramming Language, February 1983. ANSI/MIL-STD 1815A. Also published 

by Springer-Verlag as LNCS 155.

[6] S. Andriole. Storyboard prototyping for requirements verification. Large Scale 

Systems, 12:231-247, 1987.

227

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIO G RAPH Y 228

[7] Atria Software, Inc. Beyond version control: Evaluating software configuration 

management systems. Technical report, Atria Software, Inc., 24 Prime Park 

Way, Natick, Massachusetts 01760, February 1994.

[8] Stephane Barbey, Didier Buchs, and Cecile Peraire. Overview and theory for 

unit testing of object-oriented software. In Tagungsband “Qualitdtsmanagement 

der objektorientierten Software-Entwicklung”, pages 73-112, Basel, October 24 

1996.

[9] Barros. Requirements elicitation and formalism through external design and 

object-oriented specification. IEEE International Workshop on Software Spec

ification and Design, Los Alamitos, California: IEEE Computer Society Press. 

December 1993.

[10] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York. 

1983.

[11] B. Beizer. Software Testing Techniques, second edition. Van Nostrand Reinhold. 

New York, 1990.

[12] Dorothea Beringer. The model architecture frame: Quality managment in a 

multi-method environment. In M. Ross, C. A. Brebbia, G. Staples, and J. S ta

pleton, editors, SQ M ’95 Third International Conference on Software Quality 

Management, volume 1, pages 469-480, Seville-Spain, 1995. Also available as 

Technical Report (EPFL-DI-LGL No 95/111).

[13] B. Boehm. Software engineering -  as it is. In Proceedings o f the 4th Inter

national Conference on Software Engineering, pages 11-21. IEEE Computer 

Society Press, September 1979.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIO G RAPH Y 229

[14] B. Boehm. Software architectures: critical success factors and cost drivers.

In Proceedings o f the 16tA International Conference on Software Engineering.

pages 365-365. IEEE Computer Society Press, May 1994.

[15] B. Boehm and R. Ross. Theory-w software project management: a case study.

In Proceedings o f the 10f/l International Conference on Software Engineering.

pages 30-40. IEEE Computer Society Press, April 1988.

[16] B. W. Boehm. Guidelines for verifying and validating software requirements 

and design specifications. EURO IFIP79, pages 711-719, 1979.

[17] B. W. Boehm. Software process management: Lessons learned from history. In 

Proceedings o f the 9th International Conference on Software Engineering, pages 

296-298. IEEE Computer Society Press, March 1987.

[18] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation of soft

ware quality. In Proceedings o f the 2nd International Conference on Software 

Engineering, pages 592-605. IEEE Computer Society Press, October 1976.

[19] Barry W. Boehm. Software and its impact: a  quantitative assessment. Data

mation, pages 48-59, May 1973.

[20] Barry W. Boehm. Software engineering. IE E E  Transactions on Computers. 

100(25):1226-1241, 1976.

[21] Barry W. Boehm. Software engineering. IE E E  Transactions on Computers. 

C-25(12):1226-1241, December 1976.

[22] Barry W. Boehm. A spiral model of software development and enhancement. 

Computer, 21(5):61-72, 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIO G RAPH Y 230

[23] Barry W. Boehm. Software Risk Management. IEEE Computer Society Press. 

1989.

[24] B.W. Boehm. Using the winwin spiral model: A case study. IEEE Computer. 

3I(7):33-44, July 1998.

[25] B.W. Boehm, P. Bose, E. Horowitz, and M. J. Lee. Software requirements as 

negotiated win conditions. Proceedings of ICRE , pages 74-83, April 1994.

[26] Grady Booch. Object Solutions. Addison-Wesley, 1995.

[27] A.W. Brown, D.J. Carney, E.J. Morris, D.B. Smith, and P.F. Zarrella. Prin

ciples o f CASE Tool Integration. Oxford University Press., New York. NY.

1994.

[28] Ron Burback. A distributed architecture definition language: a dadl.

http://w ww-db.stanford.edu/burback/. 1997.

[29] Ron Burback. Distributed computing environment architecture. DECORUM97. 

page B12, March 1997.

[30] Ron Burback. Distributed Computing Environment Lectures. Stanford, 1997. 

ISBN 0-18-205-549-3.

[31] Ron Burback. An engineering paradigm: Noema. http://www-

db.stanford.edu/burback/, 1997.

[32] Ron Burback, Louis Perrochon, and Gio Wiederhold. A compiler for composi

tion: Chaims. Fifth International Symposium on Assessment o f Software Tools 

and Technologies (S A S T ’97), June 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-db.stanford.edu/burback/
http://www-


www.manaraa.com

BIBLIO G RAPH Y 231

[33] Robert N. Charette. Software Engineering Risk Analysis and Management. 

McGraw-Hill, NY, 1989.

[34] P. Ciaccia. From formal requirements to formal design. Seventh International 

Conference on Software Engineering and Knowledge Engineering, Skokie. Illi

nois: Knowledge Systems Institute, pages 23-30, June 1995.

[35] P. Ciancarini. Engineering formal requirements: An analysis and testing method 

for z. Annals of Software Engineering, 1997.

[36] International Standards Committee. Information technology -  basic reference 

model of open distributed processing -  part 1: Overview. Technical Report ISO 

10746-1/ITU-T X.901, International Organization for Standardization, May

1995.

[37] International Standards Committee. Odp reference model part 2: Foundations. 

Technical Report ITU-T X.902 — ISO/IEC 10746-2, International Organization 

for Standardization, May 1995.

[38] International Standards Committee. Odp reference model part 3: Architectural 

semantics. Technical Report ITU-T X.904 — ISO/IEC 10746-4, International 

Organization for Standardization, May 1995.

[39] International Standards Committee. Odp reference model part 3: Architecture. 

Technical Report ITU-T X.903 — ISO/IEC 10746-3, International Organization 

for Standardization, May 1995.

[40] Dan Conde. Bibliography on version control and configuration management. 

ACM SIGSOFT Software Engineering Notes, ll(3):81-84, July 1986.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIO G RAPH Y 232

[41] A. C. Coombes and J . A. McDermid. A tool for defining the architecture of 

Z specifications. In Z User Workshop, Oxford 1990, Workshops in Computing, 

pages 77-92. Springer-Verlag, 1991.

[42] Trevor D. Crossman. Inspection teams, are they worth it? In Proceedings of 

the 2nd National Symposium on EDP Quality Assurance, Chicago, IL., March 

1982.

[43] Siddhartha R. Dalai and Allen A. McIntosh. When to stop testing for large soft

ware systems with changing code. IEEE Transactions on Software Engineering. 

20(4):318-323, April 1994.

[44] W. Decker and Jon Valett. Software management environment (SME) concepts 

and architecture. Technical Report SEL-89-103, NASA Goddard Space Flight 

Center. Greenbelt MD 20771, September 1992.

[45] M. Von der Beeck. Method integration and abstraction from detailed semantics 

to improve software quality. International Workshop on Requirements Engi

neering: Foundations o f Software Quality, June 1994.

[46] Digital. Vax/VMS Users Introduction. Bedford, 1982.

[47] Digital. Vax/VMS System Software Handbook. Bedford, 1985.

[48] Janies H. Dobbins. Handbook o f Software Quality Assurance, chapter Inspec

tions as an Up-Front Quality Technique, pages 137-177. New York: Van Nos

trand Reinhold, 1987.

[49] Hubert L. Dreyfus. What Computers Can’t Do: A Critique o f Artificial Reason. 

New York: Harper and Row, 1979.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIO G RAPH Y 233

[50] Allan Easton. Complex Managerial Decisions Involving Multiple Objectives. 

Wiley Press., New York, NY, 1973.

[51] Robert G. Ebenau. Inspecting for software quality. In Proceedings o f the Second 

National Symposium in EDP Quality Assurance, 12611 Davon Drive. Silver 

Springs, MD 20904, 1981. DPMA Educational Foundation, U.S. Professional 

Development Institute, Inc.

[52] S. Edwards, W. Heym, T. Long, M. Sitarman, and B. Weide. Specifying com

ponents in resolve. Software Engineering Notes, 19(4), October 1994.

[53] Christer Femstrom, Kjell-Hakan Narfelt, and Lennart Ohlsson. Software factory 

principles, architecture, and experiments. IEEE Software, 9:36-44, March 1992.

[54] Open Software Foundation and Open Group. The Distributed Computing En

vironment, 1996.

[55] M. Fraser. Formal and informal requirements specification languages: Bridging 

the gap. IEEE Transactions on Software Engineering, 17, 5, pages 454-466. 

May 1991.

[56] Goldberg and Adele. Smalltalk-80: The Interactive Programming Environment. 

Addison-Wesley, 1984. ISBN 0-201-11372-4.

[57] Goldberg, Adele, and David Robson. Smalltalk-80: The Language and Its Im

plementation. Addison-Wesley, 1983. ISBN 0-201-11371-6.

[58] Goldberg, Adele, and David Robson. Smalltalk-80: The Language. Addison- 

Wesley, 1989. ISBN 0-201-13688-0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIOGRAPHY 234

[59] L. Goldin and D. Berry. Abstfinder: A prototype abstraction finder for natural 

language text for use in requirements elicitation: Design, methodology and 

evaluation. IEEE International Conference on Requirements Engineering, Los 

Alamitos, California:. 1994.

[60] Object Management Group. Common Object Request Broaker Architecture.

1996.

[61] Dick Hamlet. Foundations of software testing: Dependability theory. ACM  

SIGSO FT Software Engineering Notes, 19(5):128-139, December 1994.

[62] Dick Hamlet. Software quality, software process, and software testing. In Mar

vin V. Zelkowitz, editor, Advances in Computers, vol. J i ,  pages 191-229. Aca

demic Press, 1995.

[63] Harel, Lachover, Naamad, Pnueli, Politi, Sherman, and Shtul-Trauring. State- 

mate: a working environment for the development of complex reactive systems. 

Proceedings of the 1 Oth International Conference on Software Engineering, Sin

gapore, April 1988.

[64] Terry Hayes-Roth, Erman Coleman, and Devito Papanagopoulos. Overview 

of technowledge’s dssa program. ACM  SIGSOFT Software Engineering Notes, 

October 1994.

[65] Martin Heidegger. What is Called Thinking1? New York: Harper and Row. 

1968. Translated by Fred D. Wieck and J. Glenn Gray.

[66] B. Hetzel. Program Test Methods. Prentice-Hall, N.J., 1973.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIOGRAPHY 235

[67] B. Hetzel. The Complete Guide to Software Testing. QED, Information Sciences. 

Wellesley, Mass.. 1988.

[68] C. A. R. Hoare. Mathematical models for computing sci

ence. Copy is available at ftp.comlab.ox.ac.uk under directory 

/pub/Documents/techpapers/Tony.Hoare named mathmodl.ps. Z, August 

1994.

[69] P. Hsia. A formal approach to scenario analysis. IEEE Software, 11 , 2, March 

1994.

[70] P. Hsia and A. Gupta. Incremental delivery using abstract data types and re

quirements clustering. 2nd IEEE International Conference on Systems Integra

tion, Los Alamitos, California: IEEE Computer Society Press, pages 137-150. 

June 1992.

[71] J. D. Ichbiah, J. G. P. Barnes, J. C. Heliard, B. Krieg-Brueckner, O. Roubine, 

and B. A. Wichmann. Reference manual and rationale for the ada programming 

language. ACM SIG PLAN Notices, 14(6), June 1979.

[72] I. Jackobson. Object-Oriented Software Engineering, A Use-Case Driven Ap

proach. Addison-Wesley, 1992.

[73] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard. 

Object-Oriented Software Engineering: A Use Case Driven Approach. Addison- 

Wesley, 1992. ISBN 0-201-54435-0.

[74] F. Jahanian and A. Mok. Modechart: A specification language for real-time sys

tems. IEEE Transactions on Software Engineering, 20(12):933-947, December

1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://ftp.comlab.ox.ac.uk


www.manaraa.com

BIBLIO G RAPH Y 236

[75] W. D. Jones. Reliability models for very laxge software systems in industry. In 

International Symposium on Software Reliability Engineering, page 35. Austin. 

Texas, 1991. IEEE Computer Society Press, Los Alamitos, California.

[76] Stanley M. Sutton Jr. and Leon J. Osterweil. The design of a next-generation 

process language. Technical Report Technical Report 96-030, Department of 

Computer Science, University of Massachusetts at Amherst, January 1997.

[77] Nygaard K. and Dahl O.J. The Development o f the SIM ULA Languages. Nor

wegian Computing Centre (NCC) in Oslo, 1962.

[78] C. Kaner. Testing Computer Software. Tab Books, Blue Ridge Summit. Pa.. 

1988.

[79] G'. Kaner, J. Falk, and H. Q. Nguyen. Testing Computer Software. Van Nostrand 

Reinhold, New York, 1993.

[80] L. J. Kenah and S. F. Bate. Vax/VMS Internals and Data Structures. Digital 

Press, Bedford, 1984.

[81] B. Kitchenham, editor. Software Engineering for Large Software Systems. Cen

tre for Software Reliability, City University, Northampton Square, London 

EClV OHB, UK, 1990. ISBN 1-85166-504-8.

[82] D. E. Knuth. The Art of Computer Programming I: Fundemental Algorithms. 

Addison-Wesley, Reading, Massachusetts, 1968.

[83] D. E. Knuth. The Art of Computer Programming III: Sorting and Searching. 

Addison-Wesley, Reading, Massachusetts, 1973.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIOGRAPHY 237

[84] D. E. Knuth. The Art o f Computer Programming II: Seminumerical Algorithms. 

Addison-Wesley, Reading, Massachusetts, second edition, 1981.

[85] Krasner and Glenn. Smalltalk-80: Bits o f History, Words of Advice. Addison- 

Wesley, 1983. ISBN 0-201-11669-3.

[86] Philippe Kruchten. A rational development process. CrossTalk, 9 (7), pages 

11-16, July 1996.

[87] Ronald Lange and Robert Schwanke. Software architecture analysis: A case 

study. In Peter H. Feiler, editor, Proceedings of the 3rd International Workshop 

on Software Configuration Management, pages 19-28, Trondheim, Norway. June 

1991.

[88] Ytzhak Levendel. Reliability analysis of large software systems: Defect data 

modeling. IEEE Transactions on Software Engineering, 16(2): 141-152, 1990.

[89] Luchham and Vera. An event-based architecture definition language, to appear 

in IEEE Transactions on Software Engineering, 1996.

[90] Luqi, Shing, Barnes, and Hudhes. Prototypeing hard real-time ada systems in 

a classroom environment. Proceedings of the Seventh Annual ADA Software 

Engineering Education and Training (ASEET), Monterey, January 1993.

[91] N. Maiden and A. Sutcliffe. Requirements critiquing using domain abstractions. 

IEEE International Conference on Requirements Engineering, Los Alamitos, 

California: IEEE Computer Society Press, pages 184-193, April 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIOGRAPHY 238

[92] Maxtin. Policy implications of medical information systems. Technical report. 

Office of Technology Assessment, Washinton, D.C. U.s. Government Printing 

Office, 1977.

[93] T. H. Martin and E. B. Parker. Designing for user acceptance of an in

teractive bibliographic search facility. Interactive Bibliographic Search: The 

User/Computer Interface. Montvale NJ: IFIPS Press, 1971.

[94] Tom Maxtin. SPIRES. PhD thesis, Depaxtment of Communications. Stanford 

University, June 1974.

[95] John McCarthy. Circumscription—a form of non-monotonic reasoning. Artifi

cial Intelligence, 13:27-39, 1980.

[96] G. J. Meyers. The Art of Software Testing. John Wiley and Sons, New York. 

1979.

[97] Newton and Browne. The code 2.0 graphical parallel programming language. 

Proceedings, ACM  International Conference on Super Computing, July 1992.

[98] N. Nilsson. Principles of Artificial Intelligence, chapter 2. Morgan Kaufmann 

Publishers, Inc., Los Altos, CA, 1980.

[99] T. Olson, N. Reizer, and J. Over. A software process framework for the software 

engineering institute capability maturity model. Technical report, The Software 

Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1993.

[100] Leon J. Osterweil. Softwaxe processes axe software too. In Ninth International 

Conference on Software Engineering (ICSE’87), pages 2-13, Monterey, CA, 

Maxch 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIOGRAPHY 239

[101] Leon J. Osterweil. Software processes are software too, revisited. In Nineteenth 

International Conference on Software Engineering (IC SE ’97), pages 540-548. 

Boston, MA. May 1997.

[102] M. A. Ould and C. Unwin. Testing in Software Development. Cambridge 

University Press, 1986.

[103] Palsberg, Xiao, and Lieberherr. Efficient implementation of adaptive software 

(summary of demeter theory). Northeastern University, Boxton. 10, January

1995.

[104] Edwin B. Parker. SPIRES, Stanford physics information retrieved system. Tech

nical report, Stanford University, Institute, for Communication Research, De

cember 1967.

[105] Parnas. Why software jewels are rare. COMPUTER: IEEE Computer, 29. 1996.

[106] David Lorge Parnas, Paul C. Clements, and David M. Weiss. The modular 

structure of complex systems. IEEE Transactions on Software Engineering, 

11(3) :259—266, 1985.

[107] Mark Paulk, Charles V. Weber, Bill Curtis, and Mary Beth Chrissis. The Capa

bility Maturity Model: Guidelines for Improving the Software Process. Addison- 

Wesley, 1995. ISBN 0-201-54664-7.

[108] C. Potts and I. Hsi. Abstraction and context in requirements engineering: 

Toward a synthesis. Annals o f Software Engineering, 1997.

[109] Veleria Quercia and Tom O ’Reilly. X- Window System User’s Guide. O ’Reilly, 

Sebastopol, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIO G RAPH Y 240

[110] J . Rader, E.J. Morris, and A.W. Brown. Investigation into the state-of-the- 

practice of case integration. In Software Engineering Environments. IEEE Com

puter Society, pages 209-221, July 1993.

[111] B. Regnell, K. Kimbler, and A. Wesslen. Improving the use-case driven ap

proach to requirements engineering. Second IEEE International Symposium on 

Requirements Engineering, 1995.

[112] RMS Ross Corporation. 44325 Yale Rd West, Chilliwack, B.C., Canada. V2R 

4H2. Ross Box System , 1997.

[113] G. Rothermel and M. J. Harrold. A framework for evaluating regression test 

selection techniques. In Proceedings o f the 16th International Conference on 

Software Engineering, pages 201-210. IEEE Computer Society Press. May 1994.

[114] W. W. Royce. Managing the development of large software systems: Concepts 

and techniques. In Proc. WESCON, 1970.

[115] W. W. Royce. Managing the development of large software systems: concepts 

and techniques. In Proceedings o f the 9th International Conference on Software 

Engineering, pages 328-339. IEEE Computer Society Press, March 1987.

[116] Winston W. Royce. Managing the development of large software systems: Con

cepts and techniques. In WESCON Technical Papers, v. 14, pages A /l - l -A /1 -  

9, Los Angeles, August 1970. WESCON. Reprinted in Proceedings of the Ninth 

International Conference on Software Engineering, 1987, pp. 328-338.

[117] J. Rumbaugh, M. Blaha, W. Permerlani, F. Eddy, and W. Lorensen. Object- 

Oriented Modeling and Design. Prentice Hall, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIOGRAPHY 241

[118] R. W. Scheifler and J. Gettys. X  Window System. Digital Press, USA, 1990.

[119] G. Gordon Schulmeyer and Janies I. McManus. Handbook o f Software Quality 

Assurance. Van Nostrand Reinhold, 1987.

[120] Shaw, Deline, Klein, Ross, Young, and Selesnik. Abstraction for software ar

chitectures and tools to support them. Carnegie Mellon University, February 

1994.

[121] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. 

Young, and Gregory Zelesnik. Abstractions for software architecture and tools 

to support them. IEEE Transactions on Software Engineering, 21(4):314-335. 

April 1995.

[122] M. Shurtleff. Storyboarding and the human interfacel. Software Development. 

pages 55-56, July 1994.

[123] Mark G. Sobell. A Practical Guide to UNIX System V. The Ben

jamin/Cummings Series in Computer Science. Benjamin/Cummings, New York. 

N.Y., 2 edition, 1991.

[124] Douglas Troy. UNIX Systems. Computing Fundamentals Series. Addison- 

Wesley, New York, N.Y., 1990.

[125] I. Vessey and S. Conger. Requirements specification: Learning object, process, 

and data methodologies. Communications o f the ACM, 37, 5, pages 102-113. 

May 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIOGRAPHY 242

[126] S. Vestal. Mode changes in a real-time architecture description language. Pro

ceedings, Proc. International Workshop on Configurable Distributed Systems: 

Honeywell Technology Center and the University o f Maryland, 1994.

[127] G. Weinberg. Just say no! improving the requirements process. American 

Programmer, October 1995.

[128] P. Westmacott. Process support environments and their application to large 

scale systems. In B. A. Kitchenham, editor, Software Engineering for Large 

Software Systems, London, 1989. Elsevier Science Publishers Limited.

[129] S. White. A pragmatic formal method for computer sstem definition. Computer 

Science Ph.D. Dissertation, Polytechnic University, 1987.

[130] G. Wiederhold, P. Wegner, and S. Ceri. Towards megaprogramming. Commu

nications of the ACM , 35(ll):89-99, 1992.

[131] Terry Winograd and Fernando Flores. Undersanding Computers and Cognition: 

A New Foundation for Design. Ablex Publishing Corporation, Norwood, New 

Jersey, 1985.

[132] Douglas A. Young. The X  Window System - Programming and Applications 

with X  (OSF-Motif Edition). Prentice Hall, Englewood Cliffs, 1990.

[133] L. Zorman. Requirements envisaging by utilizing scenarios (rebus). University 

o f Southern California Computer Science Department Ph.D. Dissertation, Los 

Angeles, California, August 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Index

abstraction, 189 

alpha, 42

analysis, 6, 61, 224 

architecture, 12, 14, 161, 224 

average case 

cyclical, 97 

sequential, 92 

YVaterSluice, 101

best case

cyclical, 97 

sequential, 92 

WaterSluice, 101 

beta. 42 

booch, 53 

boundary, 198

CHAIMS, 166, 168 

change management, 1, 224 

change order control, 44, 224 

classification, 197 

clustering, 197

cohesion. 199 

complete, 84 

component, 168 

component testing, 224 

composition, 189 

CORBA, 166 

coupling, 198 

critical error, 19, 224 

critical task, 13, 15, 224 

cyclical, 1, 31, 78, 79, 82, 94 

average case, 97 

best case, 97 

dynamic complete, 97 

non-monotonic incomplete, 97 

static complete, 94 

worst case, 94

DADL, 161 

data  model, 200 

DCE, 165, 169 

decision making, 202

243

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

INDEX 244

declarative knowledge , 183 

decomposition, 189 

deployment, 171, 174 

design, 12. 13, 61, 62, 224 

development, 171, 173 

discontinuation. 171, 176 

documentation, 222 

dynamic complete 

cyclical, 97 

sequential, 92 

WaterSluice, 101

engineering environment, 177-181, 224 

environment, 61, 75

formal model, 200

generalization, 197 

gold standard, 16, 21, 224

imperative knowledge , 183 

implementation, 18, 61, 62, 224 

implementation plan, 14 

internal testing, 224

legacy, 171, 175 

lifecycle, 1, 171, 224

maintenance, 171, 175

megaprogramming, 166 

methodology, 1. 28, 31, 34, 78. 82. 83.

224 

cyclical, 31 

sequential, 28 

WaterSluice. 34 

model, 183

Noema, 155, 160 

non-monotonic

complete: WaterSluice, 101 

incomplete: cyclical, 97 

incomplete: sequential, 93 

NOS, 208 

noun phrase, 9

observation, 199 

OMT, 54 

ontology, 8, 224 

operations, 171, 174

paradigm, 1, 155 

paradigms, 224 

performance, 84 

problem statement, 61, 74 

process description, 200 

product, 43, 224

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

INDEX 245

project management, 1. 224 

proof of principle, 40, 224 

prototype, 41, 224

Rapide, 166 

Rational Objectory, 56 
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